Lieb-Thirring inequalities on the torus
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 207 (2016) no. 10, pp. 1410-1434
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the Lieb-Thirring inequalities on the $d$-dimensional torus with arbitrary periods. In the space of functions with zero average with respect to the shortest coordinate we prove the Lieb-Thirring inequalities for the $\gamma$-moments of the negative eigenvalues with constants independent of ratio of the periods. Applications to the attractors of the damped Navier-Stokes system are given.
Bibliography: 33 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Lieb-Thirring inequalities, Schrödinger operators, interpolation inequalities, attractors
Mots-clés : fractal dimension.
                    
                  
                
                
                Mots-clés : fractal dimension.
@article{SM_2016_207_10_a3,
     author = {A. A. Ilyin and A. A. Laptev},
     title = {Lieb-Thirring inequalities on the torus},
     journal = {Sbornik. Mathematics},
     pages = {1410--1434},
     publisher = {mathdoc},
     volume = {207},
     number = {10},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_10_a3/}
}
                      
                      
                    A. A. Ilyin; A. A. Laptev. Lieb-Thirring inequalities on the torus. Sbornik. Mathematics, Tome 207 (2016) no. 10, pp. 1410-1434. http://geodesic.mathdoc.fr/item/SM_2016_207_10_a3/
