Mots-clés : fractal dimension.
@article{SM_2016_207_10_a3,
author = {A. A. Ilyin and A. A. Laptev},
title = {Lieb-Thirring inequalities on the torus},
journal = {Sbornik. Mathematics},
pages = {1410--1434},
year = {2016},
volume = {207},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_10_a3/}
}
A. A. Ilyin; A. A. Laptev. Lieb-Thirring inequalities on the torus. Sbornik. Mathematics, Tome 207 (2016) no. 10, pp. 1410-1434. http://geodesic.mathdoc.fr/item/SM_2016_207_10_a3/
[1] E. H. Lieb, W. E. Thirring, “Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities”, Studies in mathematical physics. Essays in honor of V. Bargmann, Princeton Univ. Press, Princeton, NJ, 1976, 269–303 | Zbl
[2] A. Laptev, T. Weidl, “Sharp Lieb–Thirring inequalities in high dimensions”, Acta Math., 184:1 (2000), 87–111 | DOI | MR | Zbl
[3] J. Dolbeault, A. Laptev, M. Loss, “Lieb–Thirring inequalities with improved constants”, J. Eur. Math. Soc. (JEMS), 10:4 (2008), 1121–1126 | DOI | MR | Zbl
[4] R. Benguria, M. Loss, “A simple proof of a theorem of Laptev and Weidl”, Math. Res. Lett., 7:2-3 (2000), 195–203 | DOI | MR | Zbl
[5] D. Hundertmark, A. Laptev, T. Weidl, “New bounds on the Lieb–Thirring constants”, Inv. Math., 140:3 (2000), 693–704 | DOI | MR | Zbl
[6] E. H. Lieb, “On characteristic exponents in turbulence”, Comm. Math. Phys., 92:4 (1984), 473–480 | DOI | MR | Zbl
[7] A. V. Babin, M. I. Vishik, Attractors of evolution equations, Stud. Math. Appl., 25, North-Holland Publishing Co., Amsterdam, 1992, x+532 pp. | MR | MR | Zbl | Zbl
[8] P. Constantin, C. Foias, Navier–Stokes equations, Chicago Lectures in Math., Univ. of Chicago Press, Chicago, IL, 1988, x+190 pp. | MR | Zbl
[9] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., 68, 2nd ed., Springer-Verlag, New York, 1997, xxii+648 pp. | DOI | MR | Zbl
[10] J.-M. Ghidaglia, M. Marion, R. Temam, “Generalization of the Sobolev–Lieb–Thirring inequalities and applications to the dimension of attractors”, Differential Integral Equations, 1:1 (1988), 1–21 | MR | Zbl
[11] A. A. Ilyin, “Lieb–Thirring integral inequalities and their applications to attractors of the Navier–Stokes equations”, Sb. Math., 196:1 (2005), 29–61 | DOI | DOI | MR | Zbl
[12] B. S. Kashin, “On a class of inequalities for orthonormal systems”, Math. Notes, 80:2 (2006), 199–203 | DOI | DOI | MR | Zbl
[13] A. A. Ilyin, “Lieb–Thirring inequalities on some manifolds”, J. Spectr. Theory, 2:1 (2012), 57–78 | DOI | MR | Zbl
[14] J.-M. Ghidaglia, R. Temam, “Lower bound on the dimension of the attractor for the Navier–Stokes equations in space dimension 3”, Mechanics, analysis and geometry: 200 years after Lagrange, North-Holland Delta Ser., North-Holland, Amsterdam, 1991, 33–60 | MR | Zbl
[15] M. Ziane, “Optimal bounds on the dimension of attractor of the Navier–Stokes equations”, Phys. D, 105:1-3 (1997), 1–19 | DOI | MR | Zbl
[16] A. Ilyin, A. Laptev, M. Loss, S. Zelik, “One-dimensional interpolation inequalities, Carlson–Landau inequalities, and magnetic Schrödinger operators”, Int. Math. Res. Not. IMRN, 2016:4 (2016), 1190–1222 | DOI | MR | Zbl
[17] M. Aizenman, E. H. Lieb, “On semi-classical bounds for eigenvalues of Schrödinger operators”, Phys. Lett. A, 66:6 (1978), 427–429 | DOI | MR
[18] A. A. Ilyin, A. Miranville, E. S. Titi, “Small viscosity sharp estimates for the global attractor of the 2-D damped-driven Navier–Stokes equations”, Commun. Math. Sci., 2:3 (2004), 403–426 | DOI | MR | Zbl
[19] A. A. Ilyin, E. S. Titi, “The damped-driven 2D Navier–Stokes system on large elongated domains”, J. Math. Fluid Mech., 10:2 (2008), 159–175 | DOI | MR | Zbl
[20] S. V. Zelik, A. A. Ilyin, “Green's function asymptotics and sharp interpolation inequalities”, Russian Math. Surveys, 69:2 (2014), 209–260 | DOI | DOI | MR | Zbl
[21] G. H. Hardy, “A note on two inequalities”, J. London Math. Soc. (1), 11:3 (1936), 167–170 | DOI | MR | Zbl
[22] L. V. Taikov, “Kolmogorov-type inequalities and the best formulas for numerical differentiation”, Math. Notes, 4:2 (1968), 631–634 | DOI | MR | Zbl
[23] A. A. Ilyin, “Best constants in multiplicative inequalities for sup-norms”, J. London Math. Soc. (2), 58:1 (1998), 84–96 | DOI | MR | Zbl
[24] M. Bartuccelli, J. Deane, S. Zelik, “Asymptotic expansions and extremals for the critical Sobolev and Gagliardo–Nirenberg inequalities on a torus”, Proc. Roy. Soc. Edinburgh Sect. A, 143:3 (2013), 445–482 | DOI | MR
[25] A. Eden, C. Foias, “A simple proof of the generalized Lieb–Thirring inequalities in one-space dimension”, J. Math. Anal. Appl., 162:1 (1991), 250–254 | DOI | MR | Zbl
[26] O. Ladyzhenskaya, Attractors for semigroups and evolution equations, Lezioni Lincee, Cambridge Univ. Press, Cambridge, 1991, xii+73 pp. | DOI | MR | Zbl
[27] P. Constantin, C. Foias, “Global Lyapunov exponents, Kaplan–Yorke formulas and the dimension of the attractors for 2D Navier–Stokes equations”, Comm. Pure Appl. Math., 38:1 (1985), 1–27 | DOI | MR | Zbl
[28] V. V. Chepyzhov, A. A. Ilyin, “On the fractal dimension of invariant sets: applications to Navier–Stokes equations”, Discrete Contin. Dyn. Syst., 10:1-2 (2004), 117–135 | DOI | MR | Zbl
[29] V. V. Chepyzhov, A. A. Ilyin, “A note on the fractal dimension of attractors of dissipative dynamical systems”, Nonlinear Anal., 44:6 (2001), 811–819 | DOI | MR | Zbl
[30] A. A. Ilyin, “Lieb–Thirring inequalities on the $N$-sphere and in the plane, and some applications”, Proc. London Math. Soc. (3), 67:1 (1993), 159–182 | DOI | MR | Zbl
[31] L. D. Meshalkin, Ia. G. Sinai, “Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid”, J. Appl. Math. Mech., 25:6 (1961), 1700–1705 | DOI | MR | Zbl
[32] V. X. Liu, “A sharp lower bound for the Hausdorff dimension of the global attractors of the 2D Navier–Stokes equations”, Comm. Math. Phys., 158:2 (1993), 327–339 | DOI | MR | Zbl
[33] P. Constantin, C. Foias, R. Temam, “On the dimension of the attractors in two-dimensional turbulence”, Phys. D, 30:3 (1988), 284–296 | DOI | MR | Zbl