Lieb-Thirring inequalities on the torus
Sbornik. Mathematics, Tome 207 (2016) no. 10, pp. 1410-1434

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Lieb-Thirring inequalities on the $d$-dimensional torus with arbitrary periods. In the space of functions with zero average with respect to the shortest coordinate we prove the Lieb-Thirring inequalities for the $\gamma$-moments of the negative eigenvalues with constants independent of ratio of the periods. Applications to the attractors of the damped Navier-Stokes system are given. Bibliography: 33 titles.
Keywords: Lieb-Thirring inequalities, Schrödinger operators, interpolation inequalities, attractors
Mots-clés : fractal dimension.
@article{SM_2016_207_10_a3,
     author = {A. A. Ilyin and A. A. Laptev},
     title = {Lieb-Thirring inequalities on the torus},
     journal = {Sbornik. Mathematics},
     pages = {1410--1434},
     publisher = {mathdoc},
     volume = {207},
     number = {10},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_10_a3/}
}
TY  - JOUR
AU  - A. A. Ilyin
AU  - A. A. Laptev
TI  - Lieb-Thirring inequalities on the torus
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1410
EP  - 1434
VL  - 207
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_10_a3/
LA  - en
ID  - SM_2016_207_10_a3
ER  - 
%0 Journal Article
%A A. A. Ilyin
%A A. A. Laptev
%T Lieb-Thirring inequalities on the torus
%J Sbornik. Mathematics
%D 2016
%P 1410-1434
%V 207
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_10_a3/
%G en
%F SM_2016_207_10_a3
A. A. Ilyin; A. A. Laptev. Lieb-Thirring inequalities on the torus. Sbornik. Mathematics, Tome 207 (2016) no. 10, pp. 1410-1434. http://geodesic.mathdoc.fr/item/SM_2016_207_10_a3/