$L_p$-estimates for the nontangential maximal function of the solution to a~second-order elliptic equation
Sbornik. Mathematics, Tome 207 (2016) no. 10, pp. 1384-1409

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with the properties of the solution to a Dirichlet problem for a homogeneous second-order elliptic equation with $L_p$-boundary function, $p>1$. The same conditions are imposed on the coefficients of the equation and the boundary of the bounded domain as were used to establish the solvability of this problem. The $L_p$-norm of the nontangential maximal function is estimated in terms of the $L_p$-norm of the boundary value. This result depends on a new estimate, proved below, for the nontangential maximal function in terms of an analogue of the Lusin area integral. Bibliography: 31 titles.
Keywords: Dirichlet problem, nontangential maximal function.
Mots-clés : elliptic equation
@article{SM_2016_207_10_a2,
     author = {A. K. Gushchin},
     title = {$L_p$-estimates for the nontangential maximal function of the solution to a~second-order elliptic equation},
     journal = {Sbornik. Mathematics},
     pages = {1384--1409},
     publisher = {mathdoc},
     volume = {207},
     number = {10},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_10_a2/}
}
TY  - JOUR
AU  - A. K. Gushchin
TI  - $L_p$-estimates for the nontangential maximal function of the solution to a~second-order elliptic equation
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1384
EP  - 1409
VL  - 207
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_10_a2/
LA  - en
ID  - SM_2016_207_10_a2
ER  - 
%0 Journal Article
%A A. K. Gushchin
%T $L_p$-estimates for the nontangential maximal function of the solution to a~second-order elliptic equation
%J Sbornik. Mathematics
%D 2016
%P 1384-1409
%V 207
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_10_a2/
%G en
%F SM_2016_207_10_a2
A. K. Gushchin. $L_p$-estimates for the nontangential maximal function of the solution to a~second-order elliptic equation. Sbornik. Mathematics, Tome 207 (2016) no. 10, pp. 1384-1409. http://geodesic.mathdoc.fr/item/SM_2016_207_10_a2/