Local Petrovskii lacunas close to parabolic singular points of the wavefronts of~strictly hyperbolic partial differential equations
Sbornik. Mathematics, Tome 207 (2016) no. 10, pp. 1363-1383

Voir la notice de l'article provenant de la source Math-Net.Ru

We enumerate the local Petrovskii lacunas (that is, the domains of local regularity of the principal fundamental solutions of strictly hyperbolic PDEs with constant coefficients in $\mathbb{R}^N$) close to parabolic singular points of their wavefronts (that is, at the points of types $P_8^1$, $P_8^2$, $\pm X_9$, $X_9^1$, $X_9^2$, $J_{10}^1$ and $J_{10}^3$). These points form the next most difficult family of classes in the natural classification of singular points after the so-called simple singularities $A_k$, $D_k$, $E_6$, $E_7$ and $E_8$, which have been investigated previously. Also we present a computer program which counts the topologically distinct morsifications of critical points of smooth functions, and hence also the local components of the complement of a generic wavefront at its singular points. Bibliography: 22 titles.
Keywords: hyperbolic operator, sharpness, Petrovskii cycle, Petrovskii criterion.
Mots-clés : wavefront, lacuna, morsification
@article{SM_2016_207_10_a1,
     author = {V. A. Vassiliev},
     title = {Local {Petrovskii} lacunas close to parabolic singular points of the wavefronts of~strictly hyperbolic partial differential equations},
     journal = {Sbornik. Mathematics},
     pages = {1363--1383},
     publisher = {mathdoc},
     volume = {207},
     number = {10},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_10_a1/}
}
TY  - JOUR
AU  - V. A. Vassiliev
TI  - Local Petrovskii lacunas close to parabolic singular points of the wavefronts of~strictly hyperbolic partial differential equations
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1363
EP  - 1383
VL  - 207
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_10_a1/
LA  - en
ID  - SM_2016_207_10_a1
ER  - 
%0 Journal Article
%A V. A. Vassiliev
%T Local Petrovskii lacunas close to parabolic singular points of the wavefronts of~strictly hyperbolic partial differential equations
%J Sbornik. Mathematics
%D 2016
%P 1363-1383
%V 207
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_10_a1/
%G en
%F SM_2016_207_10_a1
V. A. Vassiliev. Local Petrovskii lacunas close to parabolic singular points of the wavefronts of~strictly hyperbolic partial differential equations. Sbornik. Mathematics, Tome 207 (2016) no. 10, pp. 1363-1383. http://geodesic.mathdoc.fr/item/SM_2016_207_10_a1/