Mots-clés : wavefront, lacuna, morsification
@article{SM_2016_207_10_a1,
author = {V. A. Vassiliev},
title = {Local {Petrovskii} lacunas close to parabolic singular points of the wavefronts of~strictly hyperbolic partial differential equations},
journal = {Sbornik. Mathematics},
pages = {1363--1383},
year = {2016},
volume = {207},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_10_a1/}
}
TY - JOUR AU - V. A. Vassiliev TI - Local Petrovskii lacunas close to parabolic singular points of the wavefronts of strictly hyperbolic partial differential equations JO - Sbornik. Mathematics PY - 2016 SP - 1363 EP - 1383 VL - 207 IS - 10 UR - http://geodesic.mathdoc.fr/item/SM_2016_207_10_a1/ LA - en ID - SM_2016_207_10_a1 ER -
%0 Journal Article %A V. A. Vassiliev %T Local Petrovskii lacunas close to parabolic singular points of the wavefronts of strictly hyperbolic partial differential equations %J Sbornik. Mathematics %D 2016 %P 1363-1383 %V 207 %N 10 %U http://geodesic.mathdoc.fr/item/SM_2016_207_10_a1/ %G en %F SM_2016_207_10_a1
V. A. Vassiliev. Local Petrovskii lacunas close to parabolic singular points of the wavefronts of strictly hyperbolic partial differential equations. Sbornik. Mathematics, Tome 207 (2016) no. 10, pp. 1363-1383. http://geodesic.mathdoc.fr/item/SM_2016_207_10_a1/
[1] N. A'Campo, “Le groupe de monodromie du déploiement des singularités isolées de courbes planes. I”, Math. Ann., 213:1 (1975), 1–32 | DOI | MR | Zbl
[2] N. A'Campo, “Le groupe de monodromie du déploiement des singularités isolées de courbes planes. II”, Proceedings of the International congress of mathematicians (Vancouver, B. C., 1974), v. 1, Canad. Math. Congress, Montreal, Que., 1975, 395–404 | MR | Zbl
[3] V. I. Arnol'd, S. M. Gusein-Zade, A. N. Varchenko, Singularities of differentiable maps, v. I, Monogr. Math., 82, The classification of critical points, caustics and wave fronts, Birkhäuser, Boston, MA, 1985, xi+382 pp. | DOI | MR | Zbl | Zbl
[4] V. I. Arnol'd, S. M. Gusein-Zade, A. N. Varchenko, Singularities of differentiable maps, v. II, Monogr. Math., 83, Monodromy and asymptotics of integrals, Birkhäuser, Boston, MA, 1988, viii+492 pp. | DOI | MR | Zbl | Zbl
[5] V. I. Arnol'd, V. V. Goryunov, O. V. Lyashko, V. A. Vasil'ev, “Singularity theory. II. Classification and applications”, Dynamical systems – VIII, Encyclopaedia Math. Sci., 39, Springer, Berlin, 1993, 1–235 | DOI | MR | Zbl | Zbl
[6] M. F. Atiyah, R. Bott, L. Gårding, “Lacunas for hyperbolic differential operators with constant coefficients. I”, Acta Math., 124 (1970), 109–189 | DOI | MR | Zbl
[7] M. F. Atiyah, R. Bott, L. Gårding, “Lacunas for hyperbolic differential operators with constant coefficients. II”, Acta Math., 131 (1973), 145–206 | DOI | MR | Zbl
[8] V. A. Borovikov, “Fundamental solutions of linear partial differential equations with constant coefficients”, Amer. Math. Soc. Transl. Ser. 2, 25, Amer. Math. Soc., Providence, R.I., 1963, 11–76 | MR | Zbl
[9] V. A. Borovikov, “Nekotorye dostatochnye usloviya otsutstviya lakun”, Matem. sb., 55(97):3 (1961), 237–254 | MR | Zbl
[10] A. M. Davydova, Dostatochnoe uslovie otsutstviya lakuny dlya differentsialnogo uravneniya v chastnykh proizvodnykh giperbolicheskogo tipa, Diss. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1945, 43 pp.
[11] A. M. Gabrièlov, “Intersection matrices for certain singularities”, Funct. Anal. Appl., 7:3 (1973), 182–193 | DOI | MR | Zbl
[12] L. Gårding, “Sharp fronts of paired oscillatory integrals”, Publ. Res. Inst. Math. Sci., 12:99 (1976), 53–68 | DOI | MR | Zbl
[13] S. M. Gusein-Zade, “Intersection matrices for certain singularities of functions of two variables”, Funct. Anal. Appl., 8:1 (1974), 10–13 | DOI | MR | Zbl
[14] S. M. Gusein-Zade, “Dynkin diagrams for singularities of functions of two variables”, Funct. Anal. Appl., 8:4 (1974), 295–300 | DOI | MR | Zbl
[15] S. M. Gusein-Zade, “The monodromy groups of isolated singularities of hypersurfaces”, Russian Math. Surveys, 32:2 (1977), 23–69 | DOI | MR | Zbl
[16] J. Hadamard, Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques, Hermann, Paris, 1932, 542 pp. | MR | Zbl
[17] J. Leray, “Un prolongement de la transformation de Laplace qui transforme la solution unitaire d'un opérateur hyperbolique en sa solution élémentaire. (Problème de Cauchy. IV)”, Bull. Soc. Math. France, 90 (1962), 39–156 | MR | MR | Zbl
[18] I. Petrowsky, “On the diffusion of waves and the lacunas for hyperbolic equations”, Matem. sb., 17(59):3 (1945), 289–370 | MR | Zbl
[19] A. N. Varchenko, “On normal forms of nonsmoothness of solutions of hyperbolic equations”, Math. USSR-Izv., 30:3 (1988), 615–628 | DOI | MR | Zbl
[20] V. A. Vasil'ev, “Sharpness and the local Petrovskii condition for strictly hyperbolic operators with constant coefficients”, Math. USSR-Izv., 28:2 (1987), 233–273 | DOI | MR | Zbl
[21] V. A. Vasil'ev, “Geometry of local lacunae of hyperbolic operators with constant coefficients”, Russian Acad. Sci. Sb. Math., 75:1 (1993), 111–123 | DOI | MR | Zbl
[22] V. A. Vassiliev, Applied Picard–Lefschetz theory, Math. Surveys Monogr., Amer. Math. Soc., Providence, RI, 2002, xii+324 pp. | DOI | MR | Zbl