Local Petrovskii lacunas close to parabolic singular points of the wavefronts of~strictly hyperbolic partial differential equations
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 207 (2016) no. 10, pp. 1363-1383
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We enumerate the local Petrovskii lacunas (that is, the domains of local regularity of the principal fundamental solutions of strictly hyperbolic PDEs with constant coefficients in $\mathbb{R}^N$) close to parabolic singular points of their wavefronts (that is, at the points of types $P_8^1$, $P_8^2$, $\pm X_9$, $X_9^1$, $X_9^2$, $J_{10}^1$ and $J_{10}^3$). These points form the next most difficult family of classes in the natural classification of singular points after the so-called simple singularities $A_k$, $D_k$, $E_6$, $E_7$ and $E_8$, which have been investigated previously.
Also we present a computer program which counts the topologically distinct morsifications of critical points of smooth functions, and hence also the local components of the complement of a generic wavefront at its singular points.
Bibliography: 22 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
hyperbolic operator, sharpness, Petrovskii cycle, Petrovskii criterion.
Mots-clés : wavefront, lacuna, morsification
                    
                  
                
                
                Mots-clés : wavefront, lacuna, morsification
@article{SM_2016_207_10_a1,
     author = {V. A. Vassiliev},
     title = {Local {Petrovskii} lacunas close to parabolic singular points of the wavefronts of~strictly hyperbolic partial differential equations},
     journal = {Sbornik. Mathematics},
     pages = {1363--1383},
     publisher = {mathdoc},
     volume = {207},
     number = {10},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_10_a1/}
}
                      
                      
                    TY - JOUR AU - V. A. Vassiliev TI - Local Petrovskii lacunas close to parabolic singular points of the wavefronts of~strictly hyperbolic partial differential equations JO - Sbornik. Mathematics PY - 2016 SP - 1363 EP - 1383 VL - 207 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2016_207_10_a1/ LA - en ID - SM_2016_207_10_a1 ER -
%0 Journal Article %A V. A. Vassiliev %T Local Petrovskii lacunas close to parabolic singular points of the wavefronts of~strictly hyperbolic partial differential equations %J Sbornik. Mathematics %D 2016 %P 1363-1383 %V 207 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2016_207_10_a1/ %G en %F SM_2016_207_10_a1
V. A. Vassiliev. Local Petrovskii lacunas close to parabolic singular points of the wavefronts of~strictly hyperbolic partial differential equations. Sbornik. Mathematics, Tome 207 (2016) no. 10, pp. 1363-1383. http://geodesic.mathdoc.fr/item/SM_2016_207_10_a1/
