Distribution of the zeros of canonical products and weighted condensation index
Sbornik. Mathematics, Tome 206 (2015) no. 9, pp. 1299-1339 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Canonical products with symmetrically positioned real zeros are considered. The question of the measurability of the sequence of zeros in terms of the weighted condensation index is treated. A natural class of weight functions, for which a finite condensation index ensures that the sequence of zeros is measurable, is distinguished. The main condition characterizing this class is shown to be sharp. Bibliography: 31 titles.
Keywords: canonical product, measurable sequence of zeros
Mots-clés : condensation index.
@article{SM_2015_206_9_a4,
     author = {V. B. Sherstyukov},
     title = {Distribution of the zeros of canonical products and weighted condensation index},
     journal = {Sbornik. Mathematics},
     pages = {1299--1339},
     year = {2015},
     volume = {206},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_9_a4/}
}
TY  - JOUR
AU  - V. B. Sherstyukov
TI  - Distribution of the zeros of canonical products and weighted condensation index
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 1299
EP  - 1339
VL  - 206
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_9_a4/
LA  - en
ID  - SM_2015_206_9_a4
ER  - 
%0 Journal Article
%A V. B. Sherstyukov
%T Distribution of the zeros of canonical products and weighted condensation index
%J Sbornik. Mathematics
%D 2015
%P 1299-1339
%V 206
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2015_206_9_a4/
%G en
%F SM_2015_206_9_a4
V. B. Sherstyukov. Distribution of the zeros of canonical products and weighted condensation index. Sbornik. Mathematics, Tome 206 (2015) no. 9, pp. 1299-1339. http://geodesic.mathdoc.fr/item/SM_2015_206_9_a4/

[1] A. F. Leontev, Ryady eksponent, Nauka, M., 1976 | MR | Zbl

[2] B. Ja. Levin, Distribution of zeros of entire functions, Amer. Math. Soc., Providence, R.I., 1964, viii+493 pp. | MR | MR | Zbl | Zbl

[3] V. Bernstein, Leçons sur les progrès récents de la théorie des séries de Dirichlet, Gauthier-Villars, Paris, 1933, xiv+320 pp. | Zbl

[4] I. F. Krasichkov, “Otsenki snizu dlya tselykh funktsii konechnogo poryadka”, Sib. matem. zhurn., 6:4 (1965), 840–861 | MR | Zbl

[5] A. V. Bratischev, “Vozniknovenie i razvitie ponyatiya indeksa kondensatsii”, Aktualnye voprosy teorii funktsii, Izd-vo RGU, Rostov-na-Donu, 1987, 50–55 | MR | Zbl

[6] A. Yu. Popov, “Extremal problems in the theory of analytic continuation”, Sb. Math., 190:5 (1999), 737–761 | DOI | DOI | MR | Zbl

[7] A. Yu. Popov, “Tochnaya otsenka indeksa kondensatsii”, Math. Montisnigri, 11 (1999), 67–103 | MR | Zbl

[8] A. Yu. Popov, Ekstremalnye zadachi v teorii tselykh funktsii, Diss. ... dokt. fiz.-matem. nauk, MGU, M., 2005, 226 pp.

[9] A. S. Krivosheev, “A fundamental principle for invariant subspaces in convex domains”, Izv. Math., 68:2 (2004), 291–353 | DOI | DOI | MR | Zbl

[10] O. A. Krivosheyeva, “Singular points of the sum of a series of exponential monomials on the boundary of the convergence domain”, St. Petersburg Math. J., 23:2 (2012), 321–350 | DOI | MR | Zbl

[11] A. F. Leont'ev, “On conditions of expandibility of analytic functions in Dirichlet series”, Math. USSR-Izv., 6:6 (1972), 1265–1277 | DOI | MR | Zbl

[12] A. F. Leont'ev, “1.11. The representation of functions by exponential series”, J. Soviet Math., 26:5 (1984), 2275–2278 | DOI

[13] A. V. Bratishchev, “On a problem of A. F. Leont'ev”, Soviet Math. Dokl., 27:3 (1983), 572–574 | MR | Zbl

[14] A. M. Gaĭsin, “On a conjecture of Pólya”, Russian Acad. Sci. Izv. Math., 44:2 (1995), 281–299 | DOI | MR | Zbl

[15] A. M. Gaisin, “Solution of the Polya problem”, Sb. Math., 193:6 (2002), 825–845 | DOI | DOI | MR | Zbl

[16] V. B. Sherstyukov, “Obobschennyi indeks kondensatsii posledovatelnosti polozhitelnykh chisel”, Issledovaniya po sovremennomu analizu i matematicheskomu modelirovaniyu, VNTs RAN, Vladikavkaz, 2008, 75–84

[17] V. B. Sherstyukov, “On a problem of Leont'ev and representing systems of exponentials”, Math. Notes, 74:2 (2003), 286–298 | DOI | DOI | MR | Zbl

[18] E. Seneta, Regularly varying functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin–New York, 1976, v+112 pp. | DOI | MR | MR | Zbl | Zbl

[19] V. B. Sherstyukov, “On the regularity of growth of canonical products with real zeros”, Math. Notes, 82:4 (2007), 555–563 | DOI | DOI | MR | Zbl

[20] A. E. Ingham, “A note on Fourier transforms”, J. London Math. Soc., S1-9:1 (1934), 29–32 | DOI | MR | Zbl

[21] N. Levinson, Gap and density theorems, Amer. Math. Soc. Colloq. Publ., 26, Amer. Math. Soc., New York, 1940, viii+246 pp. | MR | Zbl

[22] W. A. J. Luxemburg, J. Korevaar, “Entire functions and Müntz–Szász type approximation”, Trans. Amer. Math. Soc., 157 (1971), 23–37 | DOI | MR | Zbl

[23] A. M. Sedletskii, Klassy analiticheskikh preobrazovanii Fure i eksponentsialnye approksimatsii, Fizmatlit, M., 2005, 504 pp.

[24] B. Ya. Levin, “Pochti periodicheskie funktsii s ogranichennym spektrom”, Aktualnye voprosy matematicheskogo analiza, Izd-vo RGU, Rostov-na-Donu, 1978, 112–124

[25] V. È. Katsnel'son, “Equivalent norms in spaces of entire functions”, Math. USSR-Sb., 21:1 (1973), 33–55 | DOI | MR | Zbl

[26] V. N. Logvinenko, “Boundedness conditions for entire functions of exponential type interior to the hyperoctant $\mathbf R_+^n$”, Math. USSR-Izv., 34:3 (1990), 663–676 | DOI | MR | Zbl

[27] R. Ph. Boas, Jr., Entire functions, Academic Press Inc., New York, 1954, x+276 pp. | MR | Zbl

[28] G. G. Braichev, Vvedenie v teoriyu rosta vypuklykh i tselykh funktsii, Prometei, M., 2005, 232 pp.

[29] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Encyclopedia Math. Appl., 27, Cambridge Univ. Press, Cambridge, 1987, xx+491 pp. | DOI | MR | Zbl

[30] V. S. Boĭchuk, “Some properties of a refined order”, Siberian Math. J., 20:2 (1979), 162–167 | DOI | MR | Zbl

[31] A. A. Goldberg, I. V. Ostrovskii, Value distribution of meromorphic functions, Transl. Math. Monogr., 236, Amer. Math. Soc., Providence, RI, 2008, xvi+488 pp. | MR | MR | Zbl | Zbl