Mots-clés : equations of elliptic type
@article{SM_2015_206_9_a3,
author = {V. N. Pavlenko and D. K. Potapov},
title = {The existence of semiregular solutions to elliptic spectral problems with discontinuous nonlinearities},
journal = {Sbornik. Mathematics},
pages = {1281--1298},
year = {2015},
volume = {206},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_9_a3/}
}
TY - JOUR AU - V. N. Pavlenko AU - D. K. Potapov TI - The existence of semiregular solutions to elliptic spectral problems with discontinuous nonlinearities JO - Sbornik. Mathematics PY - 2015 SP - 1281 EP - 1298 VL - 206 IS - 9 UR - http://geodesic.mathdoc.fr/item/SM_2015_206_9_a3/ LA - en ID - SM_2015_206_9_a3 ER -
V. N. Pavlenko; D. K. Potapov. The existence of semiregular solutions to elliptic spectral problems with discontinuous nonlinearities. Sbornik. Mathematics, Tome 206 (2015) no. 9, pp. 1281-1298. http://geodesic.mathdoc.fr/item/SM_2015_206_9_a3/
[1] M. A. Krasnosel'skiĭ, A. V. Pokrovskiĭ, “Regular solutions of equations with discontinuous nonlinearities”, Soviet Math. Dokl., 17:1 (1976), 128–132 | MR | Zbl
[2] M. A. Krasnosel'skiĭ, A. V. Pokrovskiĭ, “Elliptic equations with discontinuous nonlinearities”, Russian Acad. Sci. Dokl. Math., 51:3 (1995), 415–418 | MR | Zbl
[3] K.-C. Chang, “The obstacle problem and partial differential equations with discontinuous nonlinearities”, Comm. Pure Appl. Math., 33:2 (1980), 117–146 | DOI | MR | Zbl
[4] K.-C. Chang, “Variational methods for non-differentiable functionals and their applications to partial differential equations”, J. Math. Anal. Appl., 80:1 (1981), 102–129 | DOI | MR | Zbl
[5] K.-C. Chang, “Free boundary problems and the set-valued mappings”, J. Differential Equations, 49:1 (1983), 1–28 | DOI | MR | Zbl
[6] S. Carl, “The monotone iterative technique for a parabolic boundary value problem with discontinuous nonlinearity”, Nonlinear Anal., 13:12 (1989), 1399–1407 | DOI | MR | Zbl
[7] S. Carl, S. Heikkila, “On a parabolic boundary value problem with discontinuous nonlinearity”, Nonlinear Anal., 15:11 (1990), 1091–1095 | DOI | MR | Zbl
[8] C. A. Stuart, “Maximal and minimal solutions of elliptic differential equations with discontinuous non-linearities”, Math. Z., 163:3 (1978), 239–249 | DOI | MR | Zbl
[9] C. A. Stuart, J. F. Toland, “A property of solutions of elliptic differential equations with discontinuous nonlinearities”, J. London Math. Soc. (2), 21:2 (1980), 329–335 | DOI | MR | Zbl
[10] N. Basile, M. Mininni, “Some solvability results for elliptic boundary value problems in resonance at the first eigenvalue with discontinuous nonlinearities”, Boll. Un. Mat. Ital. B (5), 17:3 (1980), 1023–1033 | MR | Zbl
[11] I. Massabò, “Elliptic boundary value problems at resonance with discontinuous nonlinearities”, Boll. Un. Mat. Ital. B (5), 17:3 (1980), 1308–1320 | MR | Zbl
[12] V. N. Pavlenko, “Existence of semiregular solutions of a first boundary-value problem for a parabolic equation with a nonmonotonic discontinuous nonlinearity”, Differ. Equ., 27:3 (1991), 374–379 | MR | Zbl
[13] V. N. Pavlenko, O. V. Ul'yanova, “The method of upper and lower solutions for equations of elliptic type with discontinuous nonlinearities”, Russian Math. (Iz. VUZ), 42:11 (1998), 65–72 | MR | Zbl
[14] V. N. Pavlenko, O. V. Ul'yanova, “Method of upper and lower solutions for parabolic-type equations with discontinuous nonlinearities”, Differ. Equ., 38:4 (2002), 520–527 | DOI | MR | Zbl
[15] V. N. Pavlenko, V. V. Vinokur, “Resonance boundary value problems for elliptic equations with discontinuous nonlinearities”, Russian Math. (Iz. VUZ), 45:5 (2001), 40–55 | MR | Zbl
[16] V. N. Pavlenko, D. K. Potapov, “Existence of a ray of eigenvalues for equations with discontinuous operators”, Siberian Math. J., 42:4 (2001), 766–773 | DOI | MR | Zbl
[17] M. G. Lepchinskii, V. N. Pavlenko, “Regular solutions of elliptic boundary-value problems with discontinuous nonlinearities”, St. Petersburg Math. J., 17:3 (2006), 465–475 | DOI | MR | Zbl
[18] L. Gasiński, N. S. Papageorgiou, Nonsmooth critical point theory and nonlinear boundary value problems, Chapman Hall/CRC, Boca Raton, FL, 2005, xiv+775 pp. | MR | Zbl
[19] H. Chrayteh, J. M. Rakotoson, “Eigenvalue problems with fully discontinuous operators and critical exponents”, Nonlinear Anal., 73:7 (2010), 2036–2055 | DOI | MR | Zbl
[20] D. K. Potapov, “Spectral problems for equations with discontinuous monotone operators”, J. Math. Sci. (N. Y.), 144:4 (2007), 4232–4233 | DOI | MR | Zbl
[21] S. A. Marano, D. Motreanu, “On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems”, Nonlinear Anal., 48:1 (2002), 37–52 | DOI | MR | Zbl
[22] G. Bonanno, P. Candito, “Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities”, J. Differential Equations, 244:12 (2008), 3031–3059 | DOI | MR | Zbl
[23] Chengfu Wang, Yisheng Huang, “Multiple solutions for a class of quasilinear elliptic problems with discontinuous nonlinearities and weights”, Nonlinear Anal., 72:11 (2010), 4076–4081 | DOI | MR | Zbl
[24] D. K. Potapov, “On the eigenvalue set structure for higher-order equations of elliptic type with discontinuous nonlinearities”, Differ. Equ., 46:1 (2010), 155–157 | DOI | MR | Zbl
[25] D. K. Potapov, “Spectral problems for variational inequalities with discontinuous operators”, Math. Notes, 93:2 (2013), 288–296 | DOI | DOI | MR | Zbl
[26] D. K. Potapov, “O suschestvovanii lucha sobstvennykh znachenii dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami v kriticheskom sluchae”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 2004, no. 4, 125–132
[27] M. G. Lepchinskii, Suschestvovanie i ustoichivost reshenii kraevykh zadach ellipticheskogo tipa s razryvnymi nelineinostyami, Diss. ... kand. fiz.-matem. nauk, Chelyabinskii gos. un-t, Chelyabinsk, 2006, 124 pp.
[28] M. A. Krasnosel'skiĭ, Positive solutions of operator equations, P. Noordhoff Ltd., Groningen, 1964, 381 pp. | MR | MR | Zbl | Zbl
[29] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Classics Math., reprint of the 1998 ed., Springer-Verlag, Berlin, 2001, xiv+517 pp. | DOI | MR | MR | Zbl | Zbl
[30] I. V. Shragin, “Conditions for the measurability of superpositions”, Soviet Math. Dokl., 12 (1971), 465–470 | MR | Zbl
[31] R. Iannacci, M. N. Nkashama, J. R. Ward, “Nonlinear second order elliptic partial differential equations at resonance”, Trans. Amer. Math. Soc., 311:2 (1989), 711–726 | DOI | MR | Zbl
[32] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York–London, 1968, xviii+495 pp. | MR | MR | Zbl | Zbl