The existence of semiregular solutions to elliptic spectral problems with discontinuous nonlinearities
Sbornik. Mathematics, Tome 206 (2015) no. 9, pp. 1281-1298 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is concerned with the existence of semiregular solutions to the Dirichlet problem for an equation of elliptic type with discontinuous nonlinearity and when the differential operator is not assumed to be formally self-adjoint. Theorems on the existence of semiregular (positive and negative) solutions for the problem under consideration are given, and a principle of upper and lower solutions giving the existence of semiregular solutions is established. For positive values of the spectral parameter, elliptic spectral problems with discontinuous nonlinearities are shown to have nontrivial semiregular (positive and negative) solutions. Bibliography: 32 titles.
Keywords: spectral problems, discontinuous nonlinearity, semiregular solutions, the method of upper and lower solutions.
Mots-clés : equations of elliptic type
@article{SM_2015_206_9_a3,
     author = {V. N. Pavlenko and D. K. Potapov},
     title = {The existence of semiregular solutions to elliptic spectral problems with discontinuous nonlinearities},
     journal = {Sbornik. Mathematics},
     pages = {1281--1298},
     year = {2015},
     volume = {206},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_9_a3/}
}
TY  - JOUR
AU  - V. N. Pavlenko
AU  - D. K. Potapov
TI  - The existence of semiregular solutions to elliptic spectral problems with discontinuous nonlinearities
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 1281
EP  - 1298
VL  - 206
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_9_a3/
LA  - en
ID  - SM_2015_206_9_a3
ER  - 
%0 Journal Article
%A V. N. Pavlenko
%A D. K. Potapov
%T The existence of semiregular solutions to elliptic spectral problems with discontinuous nonlinearities
%J Sbornik. Mathematics
%D 2015
%P 1281-1298
%V 206
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2015_206_9_a3/
%G en
%F SM_2015_206_9_a3
V. N. Pavlenko; D. K. Potapov. The existence of semiregular solutions to elliptic spectral problems with discontinuous nonlinearities. Sbornik. Mathematics, Tome 206 (2015) no. 9, pp. 1281-1298. http://geodesic.mathdoc.fr/item/SM_2015_206_9_a3/

[1] M. A. Krasnosel'skiĭ, A. V. Pokrovskiĭ, “Regular solutions of equations with discontinuous nonlinearities”, Soviet Math. Dokl., 17:1 (1976), 128–132 | MR | Zbl

[2] M. A. Krasnosel'skiĭ, A. V. Pokrovskiĭ, “Elliptic equations with discontinuous nonlinearities”, Russian Acad. Sci. Dokl. Math., 51:3 (1995), 415–418 | MR | Zbl

[3] K.-C. Chang, “The obstacle problem and partial differential equations with discontinuous nonlinearities”, Comm. Pure Appl. Math., 33:2 (1980), 117–146 | DOI | MR | Zbl

[4] K.-C. Chang, “Variational methods for non-differentiable functionals and their applications to partial differential equations”, J. Math. Anal. Appl., 80:1 (1981), 102–129 | DOI | MR | Zbl

[5] K.-C. Chang, “Free boundary problems and the set-valued mappings”, J. Differential Equations, 49:1 (1983), 1–28 | DOI | MR | Zbl

[6] S. Carl, “The monotone iterative technique for a parabolic boundary value problem with discontinuous nonlinearity”, Nonlinear Anal., 13:12 (1989), 1399–1407 | DOI | MR | Zbl

[7] S. Carl, S. Heikkila, “On a parabolic boundary value problem with discontinuous nonlinearity”, Nonlinear Anal., 15:11 (1990), 1091–1095 | DOI | MR | Zbl

[8] C. A. Stuart, “Maximal and minimal solutions of elliptic differential equations with discontinuous non-linearities”, Math. Z., 163:3 (1978), 239–249 | DOI | MR | Zbl

[9] C. A. Stuart, J. F. Toland, “A property of solutions of elliptic differential equations with discontinuous nonlinearities”, J. London Math. Soc. (2), 21:2 (1980), 329–335 | DOI | MR | Zbl

[10] N. Basile, M. Mininni, “Some solvability results for elliptic boundary value problems in resonance at the first eigenvalue with discontinuous nonlinearities”, Boll. Un. Mat. Ital. B (5), 17:3 (1980), 1023–1033 | MR | Zbl

[11] I. Massabò, “Elliptic boundary value problems at resonance with discontinuous nonlinearities”, Boll. Un. Mat. Ital. B (5), 17:3 (1980), 1308–1320 | MR | Zbl

[12] V. N. Pavlenko, “Existence of semiregular solutions of a first boundary-value problem for a parabolic equation with a nonmonotonic discontinuous nonlinearity”, Differ. Equ., 27:3 (1991), 374–379 | MR | Zbl

[13] V. N. Pavlenko, O. V. Ul'yanova, “The method of upper and lower solutions for equations of elliptic type with discontinuous nonlinearities”, Russian Math. (Iz. VUZ), 42:11 (1998), 65–72 | MR | Zbl

[14] V. N. Pavlenko, O. V. Ul'yanova, “Method of upper and lower solutions for parabolic-type equations with discontinuous nonlinearities”, Differ. Equ., 38:4 (2002), 520–527 | DOI | MR | Zbl

[15] V. N. Pavlenko, V. V. Vinokur, “Resonance boundary value problems for elliptic equations with discontinuous nonlinearities”, Russian Math. (Iz. VUZ), 45:5 (2001), 40–55 | MR | Zbl

[16] V. N. Pavlenko, D. K. Potapov, “Existence of a ray of eigenvalues for equations with discontinuous operators”, Siberian Math. J., 42:4 (2001), 766–773 | DOI | MR | Zbl

[17] M. G. Lepchinskii, V. N. Pavlenko, “Regular solutions of elliptic boundary-value problems with discontinuous nonlinearities”, St. Petersburg Math. J., 17:3 (2006), 465–475 | DOI | MR | Zbl

[18] L. Gasiński, N. S. Papageorgiou, Nonsmooth critical point theory and nonlinear boundary value problems, Chapman Hall/CRC, Boca Raton, FL, 2005, xiv+775 pp. | MR | Zbl

[19] H. Chrayteh, J. M. Rakotoson, “Eigenvalue problems with fully discontinuous operators and critical exponents”, Nonlinear Anal., 73:7 (2010), 2036–2055 | DOI | MR | Zbl

[20] D. K. Potapov, “Spectral problems for equations with discontinuous monotone operators”, J. Math. Sci. (N. Y.), 144:4 (2007), 4232–4233 | DOI | MR | Zbl

[21] S. A. Marano, D. Motreanu, “On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems”, Nonlinear Anal., 48:1 (2002), 37–52 | DOI | MR | Zbl

[22] G. Bonanno, P. Candito, “Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities”, J. Differential Equations, 244:12 (2008), 3031–3059 | DOI | MR | Zbl

[23] Chengfu Wang, Yisheng Huang, “Multiple solutions for a class of quasilinear elliptic problems with discontinuous nonlinearities and weights”, Nonlinear Anal., 72:11 (2010), 4076–4081 | DOI | MR | Zbl

[24] D. K. Potapov, “On the eigenvalue set structure for higher-order equations of elliptic type with discontinuous nonlinearities”, Differ. Equ., 46:1 (2010), 155–157 | DOI | MR | Zbl

[25] D. K. Potapov, “Spectral problems for variational inequalities with discontinuous operators”, Math. Notes, 93:2 (2013), 288–296 | DOI | DOI | MR | Zbl

[26] D. K. Potapov, “O suschestvovanii lucha sobstvennykh znachenii dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami v kriticheskom sluchae”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 2004, no. 4, 125–132

[27] M. G. Lepchinskii, Suschestvovanie i ustoichivost reshenii kraevykh zadach ellipticheskogo tipa s razryvnymi nelineinostyami, Diss. ... kand. fiz.-matem. nauk, Chelyabinskii gos. un-t, Chelyabinsk, 2006, 124 pp.

[28] M. A. Krasnosel'skiĭ, Positive solutions of operator equations, P. Noordhoff Ltd., Groningen, 1964, 381 pp. | MR | MR | Zbl | Zbl

[29] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Classics Math., reprint of the 1998 ed., Springer-Verlag, Berlin, 2001, xiv+517 pp. | DOI | MR | MR | Zbl | Zbl

[30] I. V. Shragin, “Conditions for the measurability of superpositions”, Soviet Math. Dokl., 12 (1971), 465–470 | MR | Zbl

[31] R. Iannacci, M. N. Nkashama, J. R. Ward, “Nonlinear second order elliptic partial differential equations at resonance”, Trans. Amer. Math. Soc., 311:2 (1989), 711–726 | DOI | MR | Zbl

[32] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York–London, 1968, xviii+495 pp. | MR | MR | Zbl | Zbl