Systematization of problems on ball estimates of a convex compactum
Sbornik. Mathematics, Tome 206 (2015) no. 9, pp. 1260-1280 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a class of finite-dimensional problems on the estimation of a convex compactum by a ball of an arbitrary norm in the form of extremal problems whose goal function is expressed via the function of the distance to the farthest point of the compactum and the function of the distance to the nearest point of the compactum or its complement. Special attention is devoted to the problem of estimating (approximating) a convex compactum by a ball of fixed radius in the Hausdorff metric. It is proved that this problem plays the role of the canonical problem: solutions of any problem in the class under consideration can be expressed via solutions of this problem for certain values of the radius. Based on studying and using the properties of solutions of this canonical problem, we obtain ranges of values of the radius in which the canonical problem expresses solutions of the problems on inscribed and circumscribed balls, the problem of uniform estimate by a ball in the Hausdorff metric, the problem of asphericity of a convex body, the problems of spherical shells of the least thickness and of the least volume for the boundary of a convex body. This makes it possible to arrange the problems in increasing order of the corresponding values of the radius. Bibliography: 34 titles.
Keywords: ball estimates of a convex compactum, distance functions, Hausdorff metric, asphericity, subdifferential.
@article{SM_2015_206_9_a2,
     author = {S. I. Dudov},
     title = {Systematization of problems on ball estimates of a~convex compactum},
     journal = {Sbornik. Mathematics},
     pages = {1260--1280},
     year = {2015},
     volume = {206},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_9_a2/}
}
TY  - JOUR
AU  - S. I. Dudov
TI  - Systematization of problems on ball estimates of a convex compactum
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 1260
EP  - 1280
VL  - 206
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_9_a2/
LA  - en
ID  - SM_2015_206_9_a2
ER  - 
%0 Journal Article
%A S. I. Dudov
%T Systematization of problems on ball estimates of a convex compactum
%J Sbornik. Mathematics
%D 2015
%P 1260-1280
%V 206
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2015_206_9_a2/
%G en
%F SM_2015_206_9_a2
S. I. Dudov. Systematization of problems on ball estimates of a convex compactum. Sbornik. Mathematics, Tome 206 (2015) no. 9, pp. 1260-1280. http://geodesic.mathdoc.fr/item/SM_2015_206_9_a2/

[1] T. Bonnesen, W. Fenchel, Theorie der konvexen Körper, Ergeb. Math. Grenzgeb., 3, no. 1, Springer, Berlin, 1934, vii+164 pp. | MR | Zbl

[2] L. Fejes Tóth, Lagerungen in der Ebene, auf der Kugel und im Raum, Grundlehren Math. Wiss., LXV, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1953, x+197 pp. | MR | Zbl

[3] M. D'Ocagne, “Sur certaines figures minima”, Bull. Soc. Math. France, 12 (1884), 168–177 | MR | Zbl

[4] H. Lebesgue, “Sur quelques questions de minimum, relatives and courbes orbiformes, et sur leurs rapports avec le calcul des variations”, J. Math. Pures Appl., 4:8 (1921), 67–96 | Zbl

[5] N. Kritikos, “Über konvexe Flächen und einschlißende Kugeln”, Math. Ann., 96 (1927), 583–586 | DOI | MR | Zbl

[6] St. Vincze, “Über den Minimalkreisring einer Eilinie”, Acta Univ. Szeged. Sect. Sci. Math., 11:3 (1947), 133–138 | MR | Zbl

[7] I. Vincze, “Über Kreisringe, die eine Eilinie einschließen”, Stud. Sci. Math. Hungar., 9 (1974), 155–159 | MR | Zbl

[8] I. Bárány, “On the minimal ring containing the boundary of a convex body”, Acta Sci. Math. (Szeged), 52:1-2 (1988), 93–100 | MR | Zbl

[9] S. I. Dudov, “Ob otsenke granitsy vypuklogo kompakta sharovym sloem”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 1:2 (2001), 64–75

[10] M. S. Nikol'skii, D. B. Silin, “On the best approximation of a convex compact set by elements of addial”, Proc. Steklov Inst. Math., 211 (1995), 306–321 | MR | Zbl

[11] S. I. Dudov, I. V. Zlatorunskaya, “Uniform estimate of a compact convex set by a ball in an arbitrary norm”, Sb. Math., 191:10 (2000), 1433–1458 | DOI | DOI | MR | Zbl

[12] S. I. Dudov, I. V. Zlatorunskaya, “Best approximation of a compact set by a ball in an arbitrary norm”, Advances in mathematics research, v. 2, Adv. Math. Res., 2, Nova Sci. Publ., Hauppauge, NY, 2003, 81–114 | MR | Zbl

[13] S. I. Dudov, I. V. Zlatorunskaya, “On an approximate uniform estimate for a compact convex set by a ball of arbitrary norm”, Comput. Math. Math. Phys., 45:3 (2005), 399–411 | MR | Zbl

[14] Yu. E. Nesterov, Metody vypukloi optimizatsii, MTsNMO, M., 2010, 262 pp.

[15] S. I. Dudov, E. A. Meshcheryakova, “Method for finding an approximate solution of the asphericity problem for a convex body”, Comput. Math. Math. Phys., 53:10 (2013), 1483–1493 | DOI | DOI | MR | Zbl

[16] S. I. Dudov, E. A. Mescheryakova, “Kharakterizatsiya ustoichivosti resheniya zadachi ob asferichnosti vypuklogo kompakta”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 11:2 (2011), 20–26

[17] S. I. Dudov, E. A. Meshcheryakova, “On asphericity of convex body”, Russian Math. (Iz. VUZ), 59:2 (2015), 36–47 | DOI

[18] S. I. Dudov, “Relations between several problems of estimating convex compacta by balls”, Sb. Math., 198:1 (2007), 39–53 | DOI | DOI | MR | Zbl

[19] R. T. Rockafellar, Convex analysis, Princeton Math. Ser., 28, Princeton Univ. Press, Princeton, N.J., 1970, xviii+451 pp. | MR | Zbl | Zbl

[20] B. N. Pshenichnyi, Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980, 320 pp. | MR | Zbl

[21] V. F. Dem'yanov, L. V. Vasil'ev, Nondifferentiable optimization, Transl. Ser. Math. Engrg., Optimization Software, Inc., Publications Division, New York, 1985, xvii+452 pp. | MR | MR | Zbl | Zbl

[22] V. F. Demyanov, A. M. Rubinov, Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Optimizatsiya i issledovanie operatsii, 23, Nauka, M., 1990, 432 pp. | MR | Zbl

[23] F. H. Clarke, Optimization and nonsmooth analysis, Canad. Math. Soc. Ser. Monogr. Adv. Texts, John Wiley Sons, Inc., New York, 1983, xiii+308 pp. | MR | Zbl | Zbl

[24] G. G. Magaril-Il'yaev, V. M. Tikhomirov, Convex analysis: theory and applications, Transl. Math. Monogr., 222, Amer. Math. Soc., Providence, RI, 2003, viii+183 pp. | MR | Zbl

[25] F. P. Vasilev, Metody optimizatsii, v. 1, 2, MTsNMO, M., 2011, 620 s., 434 pp.

[26] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004, 416 pp. | Zbl

[27] G. E. Ivanov, Slabo vypuklye mnozhestva i funktsii, Fizmatlit, M., 2006, 351 pp. | Zbl

[28] S. I. Dudov, “Subdifferentiability and superdifferentiability of distance functions”, Math. Notes, 61:4 (1997), 440–450 | DOI | DOI | MR | Zbl

[29] J. M. Borwein, S. P. Fitzpatrick, “Existence of nearest points in Banach spaces”, Canad. J. Math., 41:4 (1989), 702–720 | DOI | MR | Zbl

[30] J. B. Hiriart-Urruty, “Tangent cones, generalized gradients and mathematical programming in Banach spaces”, Math. Oper. Res., 4:1 (1979), 79–97 | DOI | MR | Zbl

[31] J. B. Hiriart-Urruty, “New concepts in nondifferentiable programming”, Bull. Soc. Math. France Mém., 60 (1979), 57–85 | MR | Zbl

[32] V. V. Gorokhovik, Vypuklye i negladkie zadachi vektornoi optimizatsii, Navuka i tekhnika, Minsk, 1990, 240 pp. | MR | Zbl

[33] J.-P. Aubin, I. Ekeland, Applied nonlinear analysis, Pure Appl. Math. (N. Y.), A Wiley-Interscience Publication. John Wiley Sons, Inc., New York, 1984, xi+518 pp. | MR | MR | Zbl

[34] G. K. Kamenev, “The initial convergence rate of adaptive methods for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 48:5 (2008), 724–738 | DOI | MR | Zbl