@article{SM_2015_206_9_a2,
author = {S. I. Dudov},
title = {Systematization of problems on ball estimates of a~convex compactum},
journal = {Sbornik. Mathematics},
pages = {1260--1280},
year = {2015},
volume = {206},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_9_a2/}
}
S. I. Dudov. Systematization of problems on ball estimates of a convex compactum. Sbornik. Mathematics, Tome 206 (2015) no. 9, pp. 1260-1280. http://geodesic.mathdoc.fr/item/SM_2015_206_9_a2/
[1] T. Bonnesen, W. Fenchel, Theorie der konvexen Körper, Ergeb. Math. Grenzgeb., 3, no. 1, Springer, Berlin, 1934, vii+164 pp. | MR | Zbl
[2] L. Fejes Tóth, Lagerungen in der Ebene, auf der Kugel und im Raum, Grundlehren Math. Wiss., LXV, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1953, x+197 pp. | MR | Zbl
[3] M. D'Ocagne, “Sur certaines figures minima”, Bull. Soc. Math. France, 12 (1884), 168–177 | MR | Zbl
[4] H. Lebesgue, “Sur quelques questions de minimum, relatives and courbes orbiformes, et sur leurs rapports avec le calcul des variations”, J. Math. Pures Appl., 4:8 (1921), 67–96 | Zbl
[5] N. Kritikos, “Über konvexe Flächen und einschlißende Kugeln”, Math. Ann., 96 (1927), 583–586 | DOI | MR | Zbl
[6] St. Vincze, “Über den Minimalkreisring einer Eilinie”, Acta Univ. Szeged. Sect. Sci. Math., 11:3 (1947), 133–138 | MR | Zbl
[7] I. Vincze, “Über Kreisringe, die eine Eilinie einschließen”, Stud. Sci. Math. Hungar., 9 (1974), 155–159 | MR | Zbl
[8] I. Bárány, “On the minimal ring containing the boundary of a convex body”, Acta Sci. Math. (Szeged), 52:1-2 (1988), 93–100 | MR | Zbl
[9] S. I. Dudov, “Ob otsenke granitsy vypuklogo kompakta sharovym sloem”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 1:2 (2001), 64–75
[10] M. S. Nikol'skii, D. B. Silin, “On the best approximation of a convex compact set by elements of addial”, Proc. Steklov Inst. Math., 211 (1995), 306–321 | MR | Zbl
[11] S. I. Dudov, I. V. Zlatorunskaya, “Uniform estimate of a compact convex set by a ball in an arbitrary norm”, Sb. Math., 191:10 (2000), 1433–1458 | DOI | DOI | MR | Zbl
[12] S. I. Dudov, I. V. Zlatorunskaya, “Best approximation of a compact set by a ball in an arbitrary norm”, Advances in mathematics research, v. 2, Adv. Math. Res., 2, Nova Sci. Publ., Hauppauge, NY, 2003, 81–114 | MR | Zbl
[13] S. I. Dudov, I. V. Zlatorunskaya, “On an approximate uniform estimate for a compact convex set by a ball of arbitrary norm”, Comput. Math. Math. Phys., 45:3 (2005), 399–411 | MR | Zbl
[14] Yu. E. Nesterov, Metody vypukloi optimizatsii, MTsNMO, M., 2010, 262 pp.
[15] S. I. Dudov, E. A. Meshcheryakova, “Method for finding an approximate solution of the asphericity problem for a convex body”, Comput. Math. Math. Phys., 53:10 (2013), 1483–1493 | DOI | DOI | MR | Zbl
[16] S. I. Dudov, E. A. Mescheryakova, “Kharakterizatsiya ustoichivosti resheniya zadachi ob asferichnosti vypuklogo kompakta”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 11:2 (2011), 20–26
[17] S. I. Dudov, E. A. Meshcheryakova, “On asphericity of convex body”, Russian Math. (Iz. VUZ), 59:2 (2015), 36–47 | DOI
[18] S. I. Dudov, “Relations between several problems of estimating convex compacta by balls”, Sb. Math., 198:1 (2007), 39–53 | DOI | DOI | MR | Zbl
[19] R. T. Rockafellar, Convex analysis, Princeton Math. Ser., 28, Princeton Univ. Press, Princeton, N.J., 1970, xviii+451 pp. | MR | Zbl | Zbl
[20] B. N. Pshenichnyi, Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980, 320 pp. | MR | Zbl
[21] V. F. Dem'yanov, L. V. Vasil'ev, Nondifferentiable optimization, Transl. Ser. Math. Engrg., Optimization Software, Inc., Publications Division, New York, 1985, xvii+452 pp. | MR | MR | Zbl | Zbl
[22] V. F. Demyanov, A. M. Rubinov, Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Optimizatsiya i issledovanie operatsii, 23, Nauka, M., 1990, 432 pp. | MR | Zbl
[23] F. H. Clarke, Optimization and nonsmooth analysis, Canad. Math. Soc. Ser. Monogr. Adv. Texts, John Wiley Sons, Inc., New York, 1983, xiii+308 pp. | MR | Zbl | Zbl
[24] G. G. Magaril-Il'yaev, V. M. Tikhomirov, Convex analysis: theory and applications, Transl. Math. Monogr., 222, Amer. Math. Soc., Providence, RI, 2003, viii+183 pp. | MR | Zbl
[25] F. P. Vasilev, Metody optimizatsii, v. 1, 2, MTsNMO, M., 2011, 620 s., 434 pp.
[26] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004, 416 pp. | Zbl
[27] G. E. Ivanov, Slabo vypuklye mnozhestva i funktsii, Fizmatlit, M., 2006, 351 pp. | Zbl
[28] S. I. Dudov, “Subdifferentiability and superdifferentiability of distance functions”, Math. Notes, 61:4 (1997), 440–450 | DOI | DOI | MR | Zbl
[29] J. M. Borwein, S. P. Fitzpatrick, “Existence of nearest points in Banach spaces”, Canad. J. Math., 41:4 (1989), 702–720 | DOI | MR | Zbl
[30] J. B. Hiriart-Urruty, “Tangent cones, generalized gradients and mathematical programming in Banach spaces”, Math. Oper. Res., 4:1 (1979), 79–97 | DOI | MR | Zbl
[31] J. B. Hiriart-Urruty, “New concepts in nondifferentiable programming”, Bull. Soc. Math. France Mém., 60 (1979), 57–85 | MR | Zbl
[32] V. V. Gorokhovik, Vypuklye i negladkie zadachi vektornoi optimizatsii, Navuka i tekhnika, Minsk, 1990, 240 pp. | MR | Zbl
[33] J.-P. Aubin, I. Ekeland, Applied nonlinear analysis, Pure Appl. Math. (N. Y.), A Wiley-Interscience Publication. John Wiley Sons, Inc., New York, 1984, xi+518 pp. | MR | MR | Zbl
[34] G. K. Kamenev, “The initial convergence rate of adaptive methods for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 48:5 (2008), 724–738 | DOI | MR | Zbl