A higher-dimensional Contou-Carrère symbol: local theory
Sbornik. Mathematics, Tome 206 (2015) no. 9, pp. 1191-1259 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a higher-dimensional Contou-Carrère symbol and we study some of its fundamental properties. The higher-dimensional Contou-Carrère symbol is defined by means of the boundary map for $K$-groups. We prove its universal property. We provide an explicit formula for the higher-dimensional Contou-Carrère symbol over $\mathbb Q$ and we prove the integrality of this formula. We also study its relation with the higher-dimensional Witt pairing. Bibliography: 46 titles.
Keywords: boundary map for $K$-groups, Witt pairing.
Mots-clés : Contou-Carrère symbol
@article{SM_2015_206_9_a1,
     author = {S. O. Gorchinskiy and D. V. Osipov},
     title = {A~higher-dimensional {Contou-Carr\`ere} symbol: local theory},
     journal = {Sbornik. Mathematics},
     pages = {1191--1259},
     year = {2015},
     volume = {206},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_9_a1/}
}
TY  - JOUR
AU  - S. O. Gorchinskiy
AU  - D. V. Osipov
TI  - A higher-dimensional Contou-Carrère symbol: local theory
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 1191
EP  - 1259
VL  - 206
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_9_a1/
LA  - en
ID  - SM_2015_206_9_a1
ER  - 
%0 Journal Article
%A S. O. Gorchinskiy
%A D. V. Osipov
%T A higher-dimensional Contou-Carrère symbol: local theory
%J Sbornik. Mathematics
%D 2015
%P 1191-1259
%V 206
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2015_206_9_a1/
%G en
%F SM_2015_206_9_a1
S. O. Gorchinskiy; D. V. Osipov. A higher-dimensional Contou-Carrère symbol: local theory. Sbornik. Mathematics, Tome 206 (2015) no. 9, pp. 1191-1259. http://geodesic.mathdoc.fr/item/SM_2015_206_9_a1/

[1] C. Contou-Carrère, “Jacobienne locale, groupe de bivecteurs de Witt universel, et symbole modéré”, C. R. Acad. Sci. Paris Sér. I Math., 318:8 (1994), 743–746 | MR | Zbl

[2] C. Contou-Carrère, “Jacobienne locale d'une courbe formelle relative”, Rend. Semin. Mat. Univ. Padova, 130 (2013), 1–106 | DOI | MR | Zbl

[3] A. A. Beilinson, “Vysshie regulyatory i znacheniya $L$-funktsii krivykh”, Funkts. analiz i ego pril., 14:2 (1980), 46–47 | MR | Zbl

[4] P. Deligne, “Le symbole modéré”, Inst. Hautes Études Sci. Publ. Math., 73 (1991), 147–181 | DOI | MR | Zbl

[5] H. Esnault, E. Viehweg, “Deligne–Beilinson cohomology”, Beilinson's conjectures on special values of $L$-functions, Perspect. Math., 4, Academic Press, Boston, MA, 1988, 43–91 | MR | Zbl

[6] D. Osipov, Xinwen Zhu, “The two-dimensional Contou-Carrère symbol and reciprocity laws”, J. Algebraic Geom. (to appear)

[7] G. W. Anderson, F. Pablos Romo, “Simple proofs of classical explicit reciprocity laws on curves using determinant groupoids over an Artinian local ring”, Comm. Algebra, 32:1 (2004), 79–102 | DOI | MR | Zbl

[8] S. M. Gersten, “The localization theorem for projective modules”, Comm. Algebra, 2:4 (1974), 317–350 | DOI | MR | Zbl

[9] D. Grayson, “Higher algebraic $K$-theory. II (after Daniel Quillen)”, Algebraic $K$-theory (Northwestern Univ., Evanston, Ill., 1976), Lecture Notes in Math., 551, Springer, Berlin, 1976, 217–240 | DOI | MR | Zbl

[10] K. Kato, “A generalization of local class field theory by using $K$-groups. II”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27:3 (1980), 603–683 | MR | Zbl

[11] J.-L. Brylinski, D. A. McLaughlin, “Mulitdimenisonal reciprocity laws”, J. Reine Angew. Math., 481 (1996), 125–147 | MR | Zbl

[12] S. O. Gorchinskii, D. V. Osipov, “Yavnaya formula dlya mnogomernogo simvola Kontu-Karrera”, UMN, 70:1(421) (2015), 183–184 | DOI | MR | Zbl

[13] A. N. Parshin, “Lokalnaya teoriya polei klassov”, Algebraicheskaya geometriya i ee prilozheniya, Sbornik statei, Tr. MIAN SSSR, 165, 1984, 143–170 ; A. N. Parshin, “Local class field theory”, Proc. Steklov Inst. Math., 165 (1985), 157–185 | MR | Zbl

[14] S. O. Gorchinskii, D. V. Osipov, “Kasatelnoe prostranstvo k $K$-gruppam Milnora kolets”, Tr. MIAN, 290 (2015) (to appear) ; S. O. Gorchinskiy, D. V. Osipov, “Tangent space to Milnor $K$-groups of rings”, Proc. Steklov Inst. Math., 290 (2015); arXiv: 1505.03780v1 | DOI

[15] S. Bloch, “On the tangent space to Quillen $K$-theory”, Algebraic $K$-theory (Battelle Memorial Inst., Seattle, Wash., 1972), v. I, Lecture Notes in Math., 341, Higher $K$-theories, Springer, Berlin, 1973, 205–210 | DOI | MR | Zbl

[16] M. Kontsevich, Noncommutative identities, arXiv: 1109.2469v1

[17] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, Nauka, M., 1964, 566 pp. ; Z. I. Borevich, I. R. Shafarevich, Number theory, Pure and Applied Mathematics, 20, Academic Press, New York–London, 1966, x+435 pp. | MR | Zbl | MR | Zbl

[18] S. V. Vostokov, I. B. Zhukov, I. B. Fesenko, “K teorii mnogomernykh lokalnykh polei. Metody i konstruktsii”, Algebra i analiz, 2:4 (1990), 91–118 ; S. V. Vostokov, I. B. Zhukov, I. B. Fesenko, “On the theory of multidimensional local fields. Methods and constructions”, Leningrad Math. J., 2:4 (1991), 775–800 | MR | Zbl

[19] A. Grothendieck, J. L. Verdier, “Préfaisceaux”, Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos. (French), Séminaire de géométrie algébrique du Bois-Marie 1963–1964 (SGA 4). Dirigé par M. Artin, A. Grothendieck, J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne, B. Saint-Donat, Lecture Notes in Math., 269, Springer-Verlag, Berlin–New York, 1972, 1–217 | DOI | MR | Zbl

[20] M. Artin, B. Mazur, Etale homotopy, Lecture Notes in Math., 100, Springer-Verlag, Berlin–New York, 1969, iii+169 pp. | DOI | MR | Zbl

[21] G. Pappas, M. Rappoport, “Twisted loop groups and their affine flag varieties”, Adv. Math., 219:1 (2008), 118–198 | DOI | MR | Zbl

[22] J.-L. Loday, “$K$-théorie algébrique et représentations de groupes”, Ann. Sci. École Norm. Sup. (4), 9:3 (1976), 309–377 | MR | Zbl

[23] V. Srinivas, Algebraic $K$-theory, Progr. Math., 90, 2nd ed., Birkhäuser Boston, Inc., Boston, MA, 1996, xviii+341 pp. | DOI | MR | Zbl

[24] M. Morrow, “$K_2$ of localisations of local rings”, J. Algebra, 399 (2014), 190–204 | DOI | MR | Zbl

[25] Yu. P. Nesterenko, A. A. Suslin, “Gomologii polnoi lineinoi gruppy nad lokalnym koltsom i $K$-teoriya Milnora”, Izv. AN SSSR. Ser. matem., 53:1 (1989), 121–146 ; Yu. P. Nesterenko, A. A. Suslin, “Homology of the full linear group over a local ring, and Milnor's $K$-theory”, Math. USSR-Izv., 34:1 (1990), 121–145 | MR | Zbl | DOI

[26] M. Kerz, “The Gersten conjecture for Milnor $K$-theory”, Invent. Math., 175:1 (2009), 1–33 | DOI | MR | Zbl

[27] R. W. Thomason, T. Trobaugh, “Higher algebraic $K$-theory of schemes and of derived categories”, The Grothendieck Festschrift, v. III, Progr. Math., 88, Birkhäuser Boston, Boston, MA, 1990, 247–435 | DOI | MR | Zbl

[28] E. Musicantov, A. Yom Din, Reciprocity laws and $K$-theory, arXiv: 1410.5391

[29] D. Quillen, “Higher algebraic $K$-theory. I”, Algebraic $K$-theory (Battelle Memorial Inst., Seattle, Wash., 1972), v. I, Lecture Notes in Math., 341, Higher $K$-theories, Springer, Berlin, 1973, 85–147 | DOI | MR | Zbl

[30] D. Gaitsgory, Affine Grassmannian and the loop group, Seminar notes written by D. Gaitsgory and N. Rozenblyum, 2009, 12 pp. http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Oct13(AffGr).pdf

[31] A. A. Beilinson, S. Bloch, H. Esnault, “$\varepsilon$-factors for Gauss–Manin determinants”, Mosc. Math. J., 2:3 (2002), 477–532 | MR | Zbl

[32] O. Braunling, M. Groechenig, J. Wolfson, A generalized Contou-Carrère symbol and its reciprocity laws in higher dimensions, arXiv: 1410.3451v2

[33] O. Braunling, M. Groechenig, J. Wolfson, The index map in algebraic $K$-theory, arXiv: 1410.1466v2

[34] A. N. Parshin, “Kogomologii Galua i gruppa Brauera lokalnykh polei”, Teoriya Galua, koltsa, algebraicheskie gruppy i ikh prilozheniya, Sbornik statei, Tr. MIAN SSSR, 183, Nauka. Leningradskoe otd., L., 1990, 159–169 ; A. N. Parshin, “Galois cohomology and the Brauer group of local fields”, Proc. Steklov Inst. Math., 183 (1991), 191–201 | MR | Zbl

[35] A. G. Khovanskii, “Analog opredelitelya, svyazannyi s teoriei Parshina–Kato, i tselochislennye mnogogranniki”, Funkts. analiz i ego pril., 40:2 (2006), 55–64 | DOI | MR | Zbl

[36] D. Osipov, To the multidimensional tame symbol, preprint 03-13, Humboldt University, Berlin, 2003, 27 pp. ; arXiv: http://edoc.hu-berlin.de/docviews/abstract.php?id=262041105.1362v1

[37] D. V. Osipov, “Adelnye konstruktsii pryamykh obrazov differentsialov i simvolov”, Matem. sb., 188:5 (1997), 59–84 | DOI | MR | Zbl

[38] K. Kato, “Residue homomorphisms in Milnor $K$-theory”, Galois groups and their representations (Nagoya, 1981), Adv. Stud. Pure Math., 2, North-Holland, Amsterdam, 1983, 153–172 | MR | Zbl

[39] M. Asakura, On dlog image of $K_2$ of elliptic surface minus singular fibers, arXiv: math/0511190v4

[40] A. Pál, “On the kernel and the image of the rigid analytic regulator in positive characteristic”, Publ. Res. Inst. Math. Sci., 46:2 (2010), 255–288 | DOI | MR | Zbl

[41] Dongwen Liu, “Kato's residue homomorphisms and reciprocity laws on arithmetic surfaces”, Adv. Math., 251 (2014), 1–21 | DOI | MR | Zbl

[42] T. Chinburg, G. Pappas, M. J. Taylor, Higher adeles and non-abelian Riemann–Roch, arXiv: 1204.4520v4

[43] K. Kato, “A generalization of local class field theory by using $K$-groups. I”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 26:2 (1979), 303–376 | MR | Zbl

[44] I. B. Fesenko, “Sekventsialnye topologii i faktory milnorovskikh $K$-grupp mnogomernykh lokalnykh polei”, Algebra i analiz, 13:3 (2001), 198–221 ; I. B. Fesenko, “Sequential topologies and quotients of Milnor $K$-groups of multidimensional local fields”, St. Petersburg Math. J., 13:3 (2002), 485–501 | MR | Zbl

[45] E. Witt, “Zyklische Körper und Algebren der Charakteristik $p$ vom Grad $p^n$. Struktur diskret bewerteter perfekter Körper mit vollkommenem Restklassenkörper der Charakteristik $p$”, J. Reine Angew. Math., 176 (1936), 126–140 | Zbl

[46] D. Mamford, Lektsii o krivykh na algebraicheskoi poverkhnosti, Mir, M., 1968, 236 pp. ; D. Mumford, Lectures on curves on an algebraic surface, Ann. of Math. Stud., 59, Princeton Univ. Press, Princeton, N.J., 1966, xi+200 pp. | Zbl | MR | Zbl