A~higher-dimensional Contou-Carr\`ere symbol: local theory
Sbornik. Mathematics, Tome 206 (2015) no. 9, pp. 1191-1259
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct a higher-dimensional Contou-Carrère symbol and we study some of its fundamental properties. The higher-dimensional Contou-Carrère symbol is defined by means of the boundary map for $K$-groups. We prove its universal property. We provide an explicit formula for the higher-dimensional Contou-Carrère symbol over $\mathbb Q$ and we prove the integrality of this formula. We also study its relation with the higher-dimensional Witt pairing.
Bibliography: 46 titles.
Keywords:
boundary map for $K$-groups, Witt pairing.
Mots-clés : Contou-Carrère symbol
Mots-clés : Contou-Carrère symbol
@article{SM_2015_206_9_a1,
author = {S. O. Gorchinskiy and D. V. Osipov},
title = {A~higher-dimensional {Contou-Carr\`ere} symbol: local theory},
journal = {Sbornik. Mathematics},
pages = {1191--1259},
publisher = {mathdoc},
volume = {206},
number = {9},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_9_a1/}
}
S. O. Gorchinskiy; D. V. Osipov. A~higher-dimensional Contou-Carr\`ere symbol: local theory. Sbornik. Mathematics, Tome 206 (2015) no. 9, pp. 1191-1259. http://geodesic.mathdoc.fr/item/SM_2015_206_9_a1/