On spectral synthesis on element-wise compact Abelian groups
Sbornik. Mathematics, Tome 206 (2015) no. 8, pp. 1150-1172 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $G$ be an arbitrary locally compact Abelian group and let $C(G)$ be the space of all continuous complex-valued functions on $G$. A closed linear subspace $\mathscr H\subseteq C(G)$ is referred to as an invariant subspace if it is invariant with respect to the shifts $\tau_y\colon f(x)\mapsto f(xy)$, $y\in G$. By definition, an invariant subspace $\mathscr H\subseteq C(G)$ admits strict spectral synthesis if $\mathscr H$ coincides with the closure in $C(G)$ of the linear span of all characters of $G$ belonging to $\mathscr H$. We say that strict spectral synthesis holds in the space $C(G)$ on $G$ if every invariant subspace $\mathscr H\subseteq C(G)$ admits strict spectral synthesis. An element $x$ of a topological group $G$ is said to be compact if $x$ is contained in some compact subgroup of $G$. A group $G$ is said to be element-wise compact if all elements of $G$ are compact. The main result of the paper is the proof of the fact that strict spectral synthesis holds in $C(G)$ for a locally compact Abelian group $G$ if and only if $G$ is element-wise compact. Bibliography: 14 titles.
Keywords: spectral synthesis, locally compact Abelian groups, element-wise compact groups, Bruhat-Schwartz functions.
Mots-clés : Fourier transform on groups
@article{SM_2015_206_8_a4,
     author = {S. S. Platonov},
     title = {On spectral synthesis on element-wise compact {Abelian} groups},
     journal = {Sbornik. Mathematics},
     pages = {1150--1172},
     year = {2015},
     volume = {206},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_8_a4/}
}
TY  - JOUR
AU  - S. S. Platonov
TI  - On spectral synthesis on element-wise compact Abelian groups
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 1150
EP  - 1172
VL  - 206
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_8_a4/
LA  - en
ID  - SM_2015_206_8_a4
ER  - 
%0 Journal Article
%A S. S. Platonov
%T On spectral synthesis on element-wise compact Abelian groups
%J Sbornik. Mathematics
%D 2015
%P 1150-1172
%V 206
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2015_206_8_a4/
%G en
%F SM_2015_206_8_a4
S. S. Platonov. On spectral synthesis on element-wise compact Abelian groups. Sbornik. Mathematics, Tome 206 (2015) no. 8, pp. 1150-1172. http://geodesic.mathdoc.fr/item/SM_2015_206_8_a4/

[1] L. Schwartz, “Théorie générale des fonctions moyenne-périodiques”, Ann. of Math. (2), 48:4 (1947), 857–929 | DOI | MR | Zbl

[2] D. I. Gurevich, “Counterexamples to a problem of L. Schwartz”, Funct. Anal. Appl., 9:2 (1975), 116–120 | DOI | MR | Zbl

[3] L. Schwartz, “Analyse et synthèse harmoniques dans les espaces de distributions”, Canadian J. Math., 3 (1951), 503–512 | DOI | MR | Zbl

[4] S. S. Platonov, “On spectral synthesis on zero-dimensional Abelian groups”, Sb. Math., 204:9 (2013), 1332–1346 | DOI | DOI | MR | Zbl

[5] L. Székelyhidi, Discrete spectral synthesis and its applications, Springer Monogr. Math., Springer, Dordrecht, 2006, xvi+117 pp. | MR | Zbl

[6] M. Laczkovich, L. Székelyhidi, “Spectral synthesis on discrete Abelian groups”, Math. Proc. Cambridge Philos. Soc., 143:1 (2007), 103–120 | DOI | MR | Zbl

[7] E. Hewitt, K. A. Ross, Abstract harmonic analysis, v. I, Grundlehren Math. Wiss., 115, Structure of topological groups. Integration theory, group representations, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963, viii+519 pp. | DOI | MR | MR | Zbl

[8] L. S. Pontrjagin, Topological groups, Princeton Math. Ser., 2, Princeton Univ. Press, Princeton, 1939, ix+299 pp. | MR | MR | Zbl | Zbl

[9] S. A. Morris, Pontryagin duality and the structure of locally compact abelian groups, London Math. Soc. Lecture Note Ser., 29, Cambridge Univ. Press, Cambridge–New York–Melbourne, 1977, viii+128 pp. | MR | MR | Zbl | Zbl

[10] L. Székelyhidi, “Spectral synthesis problems on locally compact groups”, Monatsh. Math., 161:2 (2010), 223–232 | DOI | MR | Zbl

[11] J. Braconnier, “Sur les groupes topologiques localement compacts”, J. Math. Pures Appl. (9), 27 (1948), 1–85 | MR | Zbl

[12] F. Bruhat, “Distributions sur un groupe localement compact et applications à l'étude des représentations des groupes $p$-adiques”, Bull. Soc. Math. France, 89 (1961), 43–75 | MR | Zbl

[13] M. S. Osborne, “On the Schwartz–Bruhat space and Paley–Wiener theorem for locally compact Abelian groups”, J. Functional Analysis, 19:1 (1975), 40–49 | DOI | MR | Zbl

[14] R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York–Toronto–London, 1965, xiii+781 pp. | MR | Zbl | Zbl