Existence of solutions of anisotropic elliptic equations with nonpolynomial nonlinearities in unbounded domains
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 206 (2015) no. 8, pp. 1123-1149
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper is concerned with the solvability of the Dirichlet problem for a certain class of anisotropic elliptic second-order equations in divergence form with low-order terms and nonpolynomial nonlinearities
$$
\sum_{\alpha=1}^{n}(a_{\alpha}(x,u,\nabla u))_{x_{\alpha}}-a_0(x,u,\nabla u)=0,
\qquad
x \in \Omega.
$$
The Carathéodory functions $a_{\alpha}(x,s_0,s)$, $\alpha=0,1,\dots,n$, are assumed to satisfy a joint monotonicity condition in the arguments $s_0\in\mathbb{R}$, $s\in\mathbb{R}_n$. Constraints on their growth in $s_0,s$ are formulated in terms of a special class of convex functions. The solvability of the Dirichlet problem in unbounded domains $\Omega\subset \mathbb{R}_n$, $n\geqslant 2$, is investigated. An existence theorem is proved without making any assumptions on the behaviour of the solutions and their growth as $|x|\to \infty$.
Bibliography: 26 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
nonpolynomial nonlinearities, Orlicz-Sobolev space, unbounded domain.
Mots-clés : anisotropic elliptic equation, existence of a solution
                    
                  
                
                
                Mots-clés : anisotropic elliptic equation, existence of a solution
@article{SM_2015_206_8_a3,
     author = {L. M. Kozhevnikova and A. A. Khadzhi},
     title = {Existence of solutions of anisotropic elliptic equations with nonpolynomial nonlinearities in unbounded domains},
     journal = {Sbornik. Mathematics},
     pages = {1123--1149},
     publisher = {mathdoc},
     volume = {206},
     number = {8},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_8_a3/}
}
                      
                      
                    TY - JOUR AU - L. M. Kozhevnikova AU - A. A. Khadzhi TI - Existence of solutions of anisotropic elliptic equations with nonpolynomial nonlinearities in unbounded domains JO - Sbornik. Mathematics PY - 2015 SP - 1123 EP - 1149 VL - 206 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2015_206_8_a3/ LA - en ID - SM_2015_206_8_a3 ER -
%0 Journal Article %A L. M. Kozhevnikova %A A. A. Khadzhi %T Existence of solutions of anisotropic elliptic equations with nonpolynomial nonlinearities in unbounded domains %J Sbornik. Mathematics %D 2015 %P 1123-1149 %V 206 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2015_206_8_a3/ %G en %F SM_2015_206_8_a3
L. M. Kozhevnikova; A. A. Khadzhi. Existence of solutions of anisotropic elliptic equations with nonpolynomial nonlinearities in unbounded domains. Sbornik. Mathematics, Tome 206 (2015) no. 8, pp. 1123-1149. http://geodesic.mathdoc.fr/item/SM_2015_206_8_a3/
