Existence of solutions of anisotropic elliptic equations with nonpolynomial nonlinearities in unbounded domains
Sbornik. Mathematics, Tome 206 (2015) no. 8, pp. 1123-1149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with the solvability of the Dirichlet problem for a certain class of anisotropic elliptic second-order equations in divergence form with low-order terms and nonpolynomial nonlinearities $$ \sum_{\alpha=1}^{n}(a_{\alpha}(x,u,\nabla u))_{x_{\alpha}}-a_0(x,u,\nabla u)=0, \qquad x \in \Omega. $$ The Carathéodory functions $a_{\alpha}(x,s_0,s)$, $\alpha=0,1,\dots,n$, are assumed to satisfy a joint monotonicity condition in the arguments $s_0\in\mathbb{R}$, $s\in\mathbb{R}_n$. Constraints on their growth in $s_0,s$ are formulated in terms of a special class of convex functions. The solvability of the Dirichlet problem in unbounded domains $\Omega\subset \mathbb{R}_n$, $n\geqslant 2$, is investigated. An existence theorem is proved without making any assumptions on the behaviour of the solutions and their growth as $|x|\to \infty$. Bibliography: 26 titles.
Keywords: nonpolynomial nonlinearities, Orlicz-Sobolev space, unbounded domain.
Mots-clés : anisotropic elliptic equation, existence of a solution
@article{SM_2015_206_8_a3,
     author = {L. M. Kozhevnikova and A. A. Khadzhi},
     title = {Existence of solutions of anisotropic elliptic equations with nonpolynomial nonlinearities in unbounded domains},
     journal = {Sbornik. Mathematics},
     pages = {1123--1149},
     year = {2015},
     volume = {206},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_8_a3/}
}
TY  - JOUR
AU  - L. M. Kozhevnikova
AU  - A. A. Khadzhi
TI  - Existence of solutions of anisotropic elliptic equations with nonpolynomial nonlinearities in unbounded domains
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 1123
EP  - 1149
VL  - 206
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_8_a3/
LA  - en
ID  - SM_2015_206_8_a3
ER  - 
%0 Journal Article
%A L. M. Kozhevnikova
%A A. A. Khadzhi
%T Existence of solutions of anisotropic elliptic equations with nonpolynomial nonlinearities in unbounded domains
%J Sbornik. Mathematics
%D 2015
%P 1123-1149
%V 206
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2015_206_8_a3/
%G en
%F SM_2015_206_8_a3
L. M. Kozhevnikova; A. A. Khadzhi. Existence of solutions of anisotropic elliptic equations with nonpolynomial nonlinearities in unbounded domains. Sbornik. Mathematics, Tome 206 (2015) no. 8, pp. 1123-1149. http://geodesic.mathdoc.fr/item/SM_2015_206_8_a3/

[1] A. Benkirane, J. Bennouna, “Existence of entropy solutions for some nonlinear problems in Orlicz spaces”, Abstr. Appl. Anal., 7:2 (2002), 85–102 | DOI | MR | Zbl

[2] L. Aharouch, J. Bennouna, A. Touzani, “Existence of renormalized solution of some elliptic problems in Orlicz spaces”, Rev. Mat. Complut., 22:1 (2009), 91–110 | DOI | MR | Zbl

[3] P. Gwiazda, P. Wittbold, A. Wróblewska, A. Zimmermann, Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces, PhD programme: Mathematical methods in natural sciences (MMNS), preprint no. 2011-013, 2011 {http://mmns.mimuw.edu.pl/preprints/2011-013.pdf}

[4] V. P. Mihaĭlov, “The Dirichlet problem for a second order elliptic equation”, Differential Equations, 12:10 (1977), 1320–1329 | MR | Zbl

[5] A. K. Gushchin, “The Dirichlet problem for a second-order elliptic equation with an $L_p$ boundary function”, Sb. Math., 203:1 (2012), 1–27 | DOI | DOI | MR | Zbl

[6] G. A. Iosifyan, O. A. Oleinik, “Analog printsipa Sen-Venana dlya ellipticheskogo uravneniya vtorogo poryadka i edinstvennost reshenii kraevykh zadach v neogranichennykh oblastyakh”, UMN, 31:4(190) (1976), 261–262 | MR | Zbl

[7] O. A. Oleĭnik, G. A. Iosif'jan, “Energy estimates of the generalized solutions of boundary value problems for second order elliptic equations, and their applications”, Soviet Math. Dokl., 18 (1977), 241–244 | MR | Zbl

[8] L. M. Kozhevnikova, “Anisotropic classes of uniqueness of the solution of the Dirichlet problem for quasi-elliptic equations”, Izv. Math., 70:6 (2006), 1165–1200 | DOI | DOI | MR | Zbl

[9] L. M. Kozhevnikova, “O suschestvovanii i edinstvennosti reshenii zadachi Dirikhle dlya psevdodifferentsialnykh ellipticheskikh uravnenii v oblastyakh s nekompaktnymi granitsami”, Ufimsk. matem. zhurn., 1:1 (2009), 38–68 | Zbl

[10] A. L. Gladkov, “The Dirichlet problem for quasilinear degenerating elliptic equations in unbounded domains”, Differential Equations, 29:2 (1993), 217–223 | MR | Zbl

[11] A. E. Shishkov, “Solvability of boundary-value problems for quasilinear elliptic and parabolic equations in unbounded domains in classes of functions that increase at infinity”, Ukrainian Math. J., 47:2 (1995), 326–340 | DOI | MR | Zbl

[12] H. Brézis, “Semilinear equations in $\mathbb R^N$ without condition at infinity”, Appl. Math. Optim., 12 (1984), 271–282 | DOI | MR | Zbl

[13] M. M. Bokalo, “Korektnist pershoï kraiovoï zadachi dlya deyakikh kvaziliniinikh eliptichnikh rivnyan v neobmezhenikh oblastyakh bez umov na neskinchenosti”, Visnik Lviv. un-tu. Seriya mekh.-matem., 1997, no. 47, 40–47

[14] F. Bernis, “Elliptic and parabolic semilinear problems without conditions at infinity”, Arch. Rational Mech. Anal., 106:3 (1989), 217–241 | DOI | MR | Zbl

[15] J. I. Diaz, O. A. Oleinik, “Nonlinear elliptic boundary-value problems in unbounded domains and the asymptotic behaviour of its solution”, C. R. Acad. Sci. Paris Sér. I Math., 315:7 (1992), 787–792 | MR | Zbl

[16] L. Boccardo, T. Gallouet, J. L. Vazquez, “Nonlinear elliptic equations in $\mathbf R^N$ without growth restrictions on the data”, J. Differential Equations, 105:2 (1993), 334–363 | DOI | MR | Zbl

[17] G. I. Laptev, “Existence of solutions of certain quasilinear elliptic equations in $\mathbb R^N$ without conditions at infinity”, J. Math. Sci. (N. Y.), 150:5 (2008), 2384–2394 | DOI | MR | Zbl

[18] I. M. Medvit, “Zadachi dlya neliniinikh eliptichnikh i parabolichnikh rivnyan v anizotropnikh prostorakh”, Visnik Lviv. un-tu. Seriya mekh.-matem., 2005, no. 64, 149–166

[19] M. Bendahmane, K. H. Karlsen, “Nonlinear anisotropic elliptic and parabolic equations in $\mathbb R^N$ with advection and lower order terms and locally integrable data”, Potential Anal., 22:3 (2005), 207–227 | DOI | MR | Zbl

[20] M. M. Bokalo, O. V. Domanska, “On well-posedness of boundary problems for elliptic equations in general anisotropic Lebesgue–Sobolev spaces”, Mat. Stud., 28:1 (2007), 77–91 | MR | Zbl

[21] O. V. Domanska, “Boundary problems for elliptic system with anisotropic nonlinearity”, Visnik nats. un-tu. «Lvivska politekhnika». Fiz.-matem. nauki, 660:660 (2009), 5–13

[22] M. A. Krasnosel'skii, Ja. B. Rutickii, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961, xi+249 pp. | MR | MR | Zbl | Zbl

[23] A. G. Korolev, “Embedding theorems for anisotropic Sobolev–Orlicz spaces”, Mosc. Univ. Math. Bull., 38:1 (1983), 37–42 | MR | Zbl

[24] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969, xx+554 pp. | MR | MR | Zbl | Zbl

[25] V. S. Klimov, “On imbedding theorems for anisotropic classes of functions”, Math. USSR-Sb., 55:1 (1986), 195–205 | DOI | MR | Zbl

[26] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York–London, 1968, xviii+495 pp. | MR | MR | Zbl | Zbl