Mots-clés : Gauss and Markov quadrature formulae, Sturm-Liouville problem, Jacobi transform
@article{SM_2015_206_8_a2,
author = {D. V. Gorbachev and V. I. Ivanov},
title = {Gauss and {Markov} quadrature formulae with nodes at zeros of eigenfunctions of {a~Sturm-Liouville} problem, which are exact for entire functions of exponential type},
journal = {Sbornik. Mathematics},
pages = {1087--1122},
year = {2015},
volume = {206},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_8_a2/}
}
TY - JOUR AU - D. V. Gorbachev AU - V. I. Ivanov TI - Gauss and Markov quadrature formulae with nodes at zeros of eigenfunctions of a Sturm-Liouville problem, which are exact for entire functions of exponential type JO - Sbornik. Mathematics PY - 2015 SP - 1087 EP - 1122 VL - 206 IS - 8 UR - http://geodesic.mathdoc.fr/item/SM_2015_206_8_a2/ LA - en ID - SM_2015_206_8_a2 ER -
%0 Journal Article %A D. V. Gorbachev %A V. I. Ivanov %T Gauss and Markov quadrature formulae with nodes at zeros of eigenfunctions of a Sturm-Liouville problem, which are exact for entire functions of exponential type %J Sbornik. Mathematics %D 2015 %P 1087-1122 %V 206 %N 8 %U http://geodesic.mathdoc.fr/item/SM_2015_206_8_a2/ %G en %F SM_2015_206_8_a2
D. V. Gorbachev; V. I. Ivanov. Gauss and Markov quadrature formulae with nodes at zeros of eigenfunctions of a Sturm-Liouville problem, which are exact for entire functions of exponential type. Sbornik. Mathematics, Tome 206 (2015) no. 8, pp. 1087-1122. http://geodesic.mathdoc.fr/item/SM_2015_206_8_a2/
[1] V. I. Krylov, Approximate calculation of integrals, The Macmillan Co., New York–London, 1962, x+357 pp. | MR | MR | Zbl | Zbl
[2] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, rev. ed., Amer. Math. Soc., Providence, R.I., 1959, ix+421 pp. | MR | Zbl | Zbl
[3] W. Gautschi, “Orthogonal polynomials and quadrature”, Electron. Trans. Numer. Anal., 9 (1999), 65–76 (electronic) | MR | Zbl
[4] D. V. Gorbachev, V. I. Ivanov, “An extremum problem for polynomials related to codes and designs”, Math. Notes, 67:4 (2000), 433–438 | DOI | DOI | MR | Zbl
[5] V. A. Yudin, “Codes and designs”, Discrete Math. Appl., 7:2 (1997), 147–155 | DOI | DOI | MR | Zbl
[6] V. I. Levenshtein, “Universal bounds for codes and designs”, Handbook of coding theory, v. 1, North-Holland, Amsterdam, 1998, 499–648 | MR | Zbl
[7] N. I. Achieser, Vorlesungen über Approximationstheorie, Math. Lehrbücher und Monogr., II, Akademie-Verlag, Berlin, 1967, xiii+412 pp. | MR | MR | Zbl | Zbl
[8] C. Frappier, P. Oliver, “A quadrature formula involving zeros of Bessel functions”, Math. Comp., 60:201 (1993), 303–316 | DOI | MR | Zbl
[9] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. II, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953, xvii+396 pp. | MR | MR | Zbl | Zbl
[10] G. R. Grozev, Q. I. Rahman, “A quadrature formula with zeros of Bessel functions as nodes”, Math. Comp., 64:210 (1995), 715–725 | DOI | MR | Zbl
[11] R. B. Ghanem, C. Frappier, “Explicit quadrature formulae for entire functions of exponential type”, J. Approx. Theory, 92:2 (1998), 267–279 | DOI | MR | Zbl
[12] B. M. Levitan, I. S. Sargsjan, Introduction to spectral theory: selfadjoint ordinary differential operators, Transl. Math. Monogr., 39, Amer. Math. Soc., Providence, R.I., 1975, xi+525 pp. | MR | MR | Zbl | Zbl
[13] D. V. Gorbachev, “Ekstremalnaya zadacha dlya tselykh funktsii eksponentsialnogo sfericheskogo tipa, svyazannaya s otsenkoi Levenshteina plotnosti upakovki $\mathbb R^{n}$ sharami”, Izv. TulGU. Ser. Matem. Mekh. Inform., 6:1 (2000), 71–78 | MR
[14] D. V. Gorbachev, “Extremum problems for entire functions of exponential spherical type”, Math. Notes, 68:2 (2000), 159–166 | DOI | DOI | MR | Zbl
[15] D. V. Gorbachev, “Extremum problem for periodic functions supported in a ball”, Math. Notes, 69:3 (2001), 313–319 | DOI | DOI | MR | Zbl
[16] A. V. Ivanov, V. I. Ivanov, “Optimal arguments in Jackson's inequality in the power-weighted space $L_2(\mathbb{R}^d)$”, Math. Notes, 94:3 (2013), 320–329 | DOI | DOI | MR | Zbl
[17] R. Courant, D. Hilbert, Methoden der mathematischen Physik, v. I, Grundlehren Math. Wiss., 12, J. Springer, Berlin, 1931, xiv+469 pp. | MR | MR | Zbl | Zbl
[18] E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations, Clarendon Press, Oxford, 1946, 175 pp. | MR | MR | Zbl | Zbl
[19] B. M. Levitan, I. S. Sargsjan, Sturm–Liouville and Dirac operators, Math. Appl. (Soviet Ser.), 59, Kluwer Academic Publishers Group, Dordrecht, 1991, xii+350 pp. | DOI | MR | MR | Zbl | Zbl
[20] M. A. Naimark, Linear differential operators, v. I, II, Frederick Ungar Publishing Co., New York, 1967, 1968, xiii+144 pp., xv+352 pp. | MR | MR | MR | Zbl | Zbl
[21] F. W. J. Olver, Introduction to asymptotics and special functions, Academic Press, New York, 1974, xii+297 pp. | MR | Zbl
[22] S. M. Nikol'skii, Approximation of functions of several variables and imbedding theorems, Grundlehren Math. Wiss., 205, Springer-Verlag, New York–Heidelberg, 1975, viii+418 pp. | MR | MR | Zbl | Zbl
[23] B. Ja. Levin, Distribution of zeros of entire functions, Amer. Math. Soc., Providence, R.I., 1964, viii+493 pp. | MR | MR | Zbl | Zbl
[24] M. A. Evgrafov, Asymptotic estimates and entire functions, Gordon and Breach, Inc., New York, 1961, x+181 pp. | MR | MR | Zbl | Zbl
[25] M. Flensted-Jensen, T. H. Koornwinder, “The convolution structure for Jacobi function expansions”, Ark. Mat., 11:1-2 (1973), 245–262 | DOI | MR | Zbl
[26] M. Flensted-Jensen, T. H. Koornwinder, “Jacobi functions: the addition formula and the positivity of the dual convolution structure”, Ark. Mat., 17:1-2 (1979), 139–151 | DOI | MR | Zbl
[27] T. Koornwinder, “A new proof of a Paley–Wiener type theorem for the Jacobi transform”, Ark. Mat., 13:1-2 (1975), 145–159 | DOI | MR | Zbl
[28] T. H. Koornwinder, “Jacobi functions and analysis on noncompact semisimple Lie groups”, Special functions: group theoretical aspects and applications, Math. Appl., Reidel, Dordrecht, 1984, 1–85 | MR | Zbl
[29] N. Ben Salem, K. Trimèche, “Mehler integral transforms associated with Jacobi functions with respect to the dual variable”, J. Math. Anal. Appl., 214:2 (1997), 691–720 | DOI | MR | Zbl
[30] N. Ya. Vilenkin, Special functions and the theory of group representations, Transl. Math. Monogr., 22, Amer. Math. Soc., Providence, R.I., 1968, x+613 pp. | MR | MR | Zbl | Zbl
[31] W. O. Bray, M. A. Pinsky, “Pointwise Fourier inversion on rank one symmetric spaces and related topics”, J. Funct. Anal., 151:2 (1997), 306–333 | DOI | MR | Zbl
[32] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. I, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953, xxvi+302 pp. | MR | Zbl | Zbl
[33] D. S. Jones, “Asymptotics of the hypergeometric function”, Math. Methods Appl. Sci., 24:6 (2001), 369–389 | DOI | MR | Zbl
[34] L. De Carli, D. Gorbachev, S. Tikhonov, “Pitt and Boas inequalities for Fourier and Hankel transforms”, J. Math. Anal. Appl., 408:2 (2013), 762–774 | DOI | MR | Zbl
[35] D. Gorbachev, E. Liflyand, S. Tikhonov, “Weighted Fourier inequalities: Boas' conjecture in $\mathbb R^{n}$”, J. Anal. Math., 114:1 (2011), 99–120 | DOI | MR | Zbl
[36] D. Gorbachev, S. Tikhonov, “Moduli of smoothness and growth properties of Fourier transforms: two-sided estimates”, J. Approx. Theory, 164:9 (2012), 1283–1312 | DOI | MR | Zbl
[37] N. B. Andersen, “On real Paley–Wiener theorems for certain integral transforms”, J. Math. Anal. Appl., 288:1 (2003), 124–135 | DOI | MR | Zbl
[38] B. M. Levitan, “Ob asimptoticheskom povedenii spektralnoi funktsii i o razlozhenii po sobstvennym funktsiyam samosopryazhennogo differentsialnogo uravneniya vtorogo poryadka. II”, Izv. AN SSSR. Ser. matem., 19:1 (1955), 33–58 | MR | Zbl
[39] B. M. Levitan, Teoriya operatorov obobschennogo sdviga, Nauka, M., 1973, 312 pp. | MR | Zbl