Gauss and Markov quadrature formulae with nodes at zeros of eigenfunctions of a Sturm-Liouville problem, which are exact for entire functions of exponential type
Sbornik. Mathematics, Tome 206 (2015) no. 8, pp. 1087-1122 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Gauss and Markov quadrature formulae with nodes at zeros of eigenfunctions of a Sturm-Liouville problem, which are exact for entire functions of exponential type, are established. They generalize quadrature formulae involving zeros of Bessel functions, which were first designed by Frappier and Olivier. Bessel quadratures correspond to the Fourier-Hankel integral transform. Some other examples, connected with the Jacobi integral transform, Fourier series in Jacobi orthogonal polynomials and the general Sturm-Liouville problem with regular weight are also given. Bibliography: 39 titles.
Keywords: entire function of exponential type, Jacobi functions and polynomials.
Mots-clés : Gauss and Markov quadrature formulae, Sturm-Liouville problem, Jacobi transform
@article{SM_2015_206_8_a2,
     author = {D. V. Gorbachev and V. I. Ivanov},
     title = {Gauss and {Markov} quadrature formulae with nodes at zeros of eigenfunctions of {a~Sturm-Liouville} problem, which are exact for entire functions of exponential type},
     journal = {Sbornik. Mathematics},
     pages = {1087--1122},
     year = {2015},
     volume = {206},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_8_a2/}
}
TY  - JOUR
AU  - D. V. Gorbachev
AU  - V. I. Ivanov
TI  - Gauss and Markov quadrature formulae with nodes at zeros of eigenfunctions of a Sturm-Liouville problem, which are exact for entire functions of exponential type
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 1087
EP  - 1122
VL  - 206
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_8_a2/
LA  - en
ID  - SM_2015_206_8_a2
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%A V. I. Ivanov
%T Gauss and Markov quadrature formulae with nodes at zeros of eigenfunctions of a Sturm-Liouville problem, which are exact for entire functions of exponential type
%J Sbornik. Mathematics
%D 2015
%P 1087-1122
%V 206
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2015_206_8_a2/
%G en
%F SM_2015_206_8_a2
D. V. Gorbachev; V. I. Ivanov. Gauss and Markov quadrature formulae with nodes at zeros of eigenfunctions of a Sturm-Liouville problem, which are exact for entire functions of exponential type. Sbornik. Mathematics, Tome 206 (2015) no. 8, pp. 1087-1122. http://geodesic.mathdoc.fr/item/SM_2015_206_8_a2/

[1] V. I. Krylov, Approximate calculation of integrals, The Macmillan Co., New York–London, 1962, x+357 pp. | MR | MR | Zbl | Zbl

[2] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, rev. ed., Amer. Math. Soc., Providence, R.I., 1959, ix+421 pp. | MR | Zbl | Zbl

[3] W. Gautschi, “Orthogonal polynomials and quadrature”, Electron. Trans. Numer. Anal., 9 (1999), 65–76 (electronic) | MR | Zbl

[4] D. V. Gorbachev, V. I. Ivanov, “An extremum problem for polynomials related to codes and designs”, Math. Notes, 67:4 (2000), 433–438 | DOI | DOI | MR | Zbl

[5] V. A. Yudin, “Codes and designs”, Discrete Math. Appl., 7:2 (1997), 147–155 | DOI | DOI | MR | Zbl

[6] V. I. Levenshtein, “Universal bounds for codes and designs”, Handbook of coding theory, v. 1, North-Holland, Amsterdam, 1998, 499–648 | MR | Zbl

[7] N. I. Achieser, Vorlesungen über Approximationstheorie, Math. Lehrbücher und Monogr., II, Akademie-Verlag, Berlin, 1967, xiii+412 pp. | MR | MR | Zbl | Zbl

[8] C. Frappier, P. Oliver, “A quadrature formula involving zeros of Bessel functions”, Math. Comp., 60:201 (1993), 303–316 | DOI | MR | Zbl

[9] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. II, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953, xvii+396 pp. | MR | MR | Zbl | Zbl

[10] G. R. Grozev, Q. I. Rahman, “A quadrature formula with zeros of Bessel functions as nodes”, Math. Comp., 64:210 (1995), 715–725 | DOI | MR | Zbl

[11] R. B. Ghanem, C. Frappier, “Explicit quadrature formulae for entire functions of exponential type”, J. Approx. Theory, 92:2 (1998), 267–279 | DOI | MR | Zbl

[12] B. M. Levitan, I. S. Sargsjan, Introduction to spectral theory: selfadjoint ordinary differential operators, Transl. Math. Monogr., 39, Amer. Math. Soc., Providence, R.I., 1975, xi+525 pp. | MR | MR | Zbl | Zbl

[13] D. V. Gorbachev, “Ekstremalnaya zadacha dlya tselykh funktsii eksponentsialnogo sfericheskogo tipa, svyazannaya s otsenkoi Levenshteina plotnosti upakovki $\mathbb R^{n}$ sharami”, Izv. TulGU. Ser. Matem. Mekh. Inform., 6:1 (2000), 71–78 | MR

[14] D. V. Gorbachev, “Extremum problems for entire functions of exponential spherical type”, Math. Notes, 68:2 (2000), 159–166 | DOI | DOI | MR | Zbl

[15] D. V. Gorbachev, “Extremum problem for periodic functions supported in a ball”, Math. Notes, 69:3 (2001), 313–319 | DOI | DOI | MR | Zbl

[16] A. V. Ivanov, V. I. Ivanov, “Optimal arguments in Jackson's inequality in the power-weighted space $L_2(\mathbb{R}^d)$”, Math. Notes, 94:3 (2013), 320–329 | DOI | DOI | MR | Zbl

[17] R. Courant, D. Hilbert, Methoden der mathematischen Physik, v. I, Grundlehren Math. Wiss., 12, J. Springer, Berlin, 1931, xiv+469 pp. | MR | MR | Zbl | Zbl

[18] E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations, Clarendon Press, Oxford, 1946, 175 pp. | MR | MR | Zbl | Zbl

[19] B. M. Levitan, I. S. Sargsjan, Sturm–Liouville and Dirac operators, Math. Appl. (Soviet Ser.), 59, Kluwer Academic Publishers Group, Dordrecht, 1991, xii+350 pp. | DOI | MR | MR | Zbl | Zbl

[20] M. A. Naimark, Linear differential operators, v. I, II, Frederick Ungar Publishing Co., New York, 1967, 1968, xiii+144 pp., xv+352 pp. | MR | MR | MR | Zbl | Zbl

[21] F. W. J. Olver, Introduction to asymptotics and special functions, Academic Press, New York, 1974, xii+297 pp. | MR | Zbl

[22] S. M. Nikol'skii, Approximation of functions of several variables and imbedding theorems, Grundlehren Math. Wiss., 205, Springer-Verlag, New York–Heidelberg, 1975, viii+418 pp. | MR | MR | Zbl | Zbl

[23] B. Ja. Levin, Distribution of zeros of entire functions, Amer. Math. Soc., Providence, R.I., 1964, viii+493 pp. | MR | MR | Zbl | Zbl

[24] M. A. Evgrafov, Asymptotic estimates and entire functions, Gordon and Breach, Inc., New York, 1961, x+181 pp. | MR | MR | Zbl | Zbl

[25] M. Flensted-Jensen, T. H. Koornwinder, “The convolution structure for Jacobi function expansions”, Ark. Mat., 11:1-2 (1973), 245–262 | DOI | MR | Zbl

[26] M. Flensted-Jensen, T. H. Koornwinder, “Jacobi functions: the addition formula and the positivity of the dual convolution structure”, Ark. Mat., 17:1-2 (1979), 139–151 | DOI | MR | Zbl

[27] T. Koornwinder, “A new proof of a Paley–Wiener type theorem for the Jacobi transform”, Ark. Mat., 13:1-2 (1975), 145–159 | DOI | MR | Zbl

[28] T. H. Koornwinder, “Jacobi functions and analysis on noncompact semisimple Lie groups”, Special functions: group theoretical aspects and applications, Math. Appl., Reidel, Dordrecht, 1984, 1–85 | MR | Zbl

[29] N. Ben Salem, K. Trimèche, “Mehler integral transforms associated with Jacobi functions with respect to the dual variable”, J. Math. Anal. Appl., 214:2 (1997), 691–720 | DOI | MR | Zbl

[30] N. Ya. Vilenkin, Special functions and the theory of group representations, Transl. Math. Monogr., 22, Amer. Math. Soc., Providence, R.I., 1968, x+613 pp. | MR | MR | Zbl | Zbl

[31] W. O. Bray, M. A. Pinsky, “Pointwise Fourier inversion on rank one symmetric spaces and related topics”, J. Funct. Anal., 151:2 (1997), 306–333 | DOI | MR | Zbl

[32] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. I, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953, xxvi+302 pp. | MR | Zbl | Zbl

[33] D. S. Jones, “Asymptotics of the hypergeometric function”, Math. Methods Appl. Sci., 24:6 (2001), 369–389 | DOI | MR | Zbl

[34] L. De Carli, D. Gorbachev, S. Tikhonov, “Pitt and Boas inequalities for Fourier and Hankel transforms”, J. Math. Anal. Appl., 408:2 (2013), 762–774 | DOI | MR | Zbl

[35] D. Gorbachev, E. Liflyand, S. Tikhonov, “Weighted Fourier inequalities: Boas' conjecture in $\mathbb R^{n}$”, J. Anal. Math., 114:1 (2011), 99–120 | DOI | MR | Zbl

[36] D. Gorbachev, S. Tikhonov, “Moduli of smoothness and growth properties of Fourier transforms: two-sided estimates”, J. Approx. Theory, 164:9 (2012), 1283–1312 | DOI | MR | Zbl

[37] N. B. Andersen, “On real Paley–Wiener theorems for certain integral transforms”, J. Math. Anal. Appl., 288:1 (2003), 124–135 | DOI | MR | Zbl

[38] B. M. Levitan, “Ob asimptoticheskom povedenii spektralnoi funktsii i o razlozhenii po sobstvennym funktsiyam samosopryazhennogo differentsialnogo uravneniya vtorogo poryadka. II”, Izv. AN SSSR. Ser. matem., 19:1 (1955), 33–58 | MR | Zbl

[39] B. M. Levitan, Teoriya operatorov obobschennogo sdviga, Nauka, M., 1973, 312 pp. | MR | Zbl