Estimates for the Green's function and parameters of exponential dichotomy of a hyperbolic operator semigroup and linear relations
Sbornik. Mathematics, Tome 206 (2015) no. 8, pp. 1049-1086 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By applying Lyapunov's equation, the method of similar operators, and the methods of harmonic analysis, we obtain estimates for the parameters of exponential dichotomy and for the Green's function constructed for a hyperbolic operator semigroup and a hyperbolic linear relation. Estimates are obtained using quantities which are determined by the resolvent of the infinitesimal operator of the operator semigroup and of the linear relation. Bibliography: 51 titles.
Keywords: hyperbolic operator semigroup, linear relations, method of similar operators, Lyapunov's equation, spectrum of an operator.
@article{SM_2015_206_8_a1,
     author = {A. G. Baskakov},
     title = {Estimates for the {Green's} function and parameters of~exponential dichotomy of a~hyperbolic operator semigroup and linear relations},
     journal = {Sbornik. Mathematics},
     pages = {1049--1086},
     year = {2015},
     volume = {206},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_8_a1/}
}
TY  - JOUR
AU  - A. G. Baskakov
TI  - Estimates for the Green's function and parameters of exponential dichotomy of a hyperbolic operator semigroup and linear relations
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 1049
EP  - 1086
VL  - 206
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_8_a1/
LA  - en
ID  - SM_2015_206_8_a1
ER  - 
%0 Journal Article
%A A. G. Baskakov
%T Estimates for the Green's function and parameters of exponential dichotomy of a hyperbolic operator semigroup and linear relations
%J Sbornik. Mathematics
%D 2015
%P 1049-1086
%V 206
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2015_206_8_a1/
%G en
%F SM_2015_206_8_a1
A. G. Baskakov. Estimates for the Green's function and parameters of exponential dichotomy of a hyperbolic operator semigroup and linear relations. Sbornik. Mathematics, Tome 206 (2015) no. 8, pp. 1049-1086. http://geodesic.mathdoc.fr/item/SM_2015_206_8_a1/

[1] E. Hille, R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., 31, rev. ed., Amer. Math. Soc., Providence, R. I., 1957, xii+808 pp. | MR | MR | Zbl

[2] A. G. Baskakov, “Semigroups of difference operators in spectral analysis of linear differential operators”, Funct. Anal. Appl., 30:3 (1996), 149–157 | DOI | DOI | MR | Zbl

[3] C. Chicone, Yu. Latushkin, Evolution semigroups in dynamical systems and differential equations, Math. Surveys Monogr., 70, Amer. Math. Soc., Providence, RI, 1999, x+361 pp. | MR | Zbl

[4] A. G. Baskakov, Yu. N. Sintyaev, “Finite-difference operators in the study of differential operators: Solution estimates”, Differ. Equ., 46:2 (2010), 214–223 | DOI | MR | Zbl

[5] A. G. Baskakov, “Analysis of linear differential equations by methods of the spectral theory of difference operators and linear relations”, Russian Math. Surveys, 68:1 (2013), 69–116 | DOI | DOI | MR | Zbl

[6] J. Prüss, “On the spectrum of $C_{0}$-semigroups”, Trans. Amer. Math. Soc., 284:2 (1984), 847–857 | DOI | MR | Zbl

[7] K.-J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, Grad. Texts in Math., 194, Springer-Verlag, New York, 2000, xxii+586 pp. | DOI | MR | Zbl

[8] A. G. Chshiev, “The Gearhart–Prüss theorem for a class of degenerate semigroups of operators”, Math. Notes, 94:3 (2013), 400–413 | DOI | DOI | MR | Zbl

[9] A. G. Baskakov, “Linear relations as generators of semigroups of operators”, Math. Notes, 84:2 (2008), 166–183 | DOI | DOI | MR | Zbl

[10] A. G. Baskakov, A. A. Vorobjev, M. Yu. Romanova, “Hyperbolic operator semigroups and Lyapunov's equation”, Math. Notes, 89:2 (2011), 194–205 | DOI | DOI | MR | Zbl

[11] A. G. Baskakov, K. S. Kobychev, “Estimates for the embedding operator of a Sobolev space of periodic functions and for the solutions of differential equations with periodic coefficients”, Differ. Equ., 47:5 (2011), 609–619 | DOI | MR | Zbl

[12] L. A. Lusternik, V. J. Sobolev, Elements of functional analysis, Hindustan Publishing Corp., Delhi; John Wiley Sons, Inc., New York, 1974, x+322 pp. | MR | MR | Zbl | Zbl

[13] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966, xix+592 pp. | MR | MR | Zbl | Zbl

[14] S. K. Godunov, Modern aspects of linear algebra, Transl. Math. Monogr., 175, Amer. Math. Soc., Providence, RI, 1998, xvi+303 pp. | MR | Zbl | Zbl

[15] A. G. Baskakov, “Estimates of bounded solutions of linear differential equations”, Differ. Equ., 39:3 (2003), 447–450 | DOI | MR | Zbl

[16] A. I. Perov, “Frequency tests for the existence of boundary solutions”, Differ. Equ., 43:7 (2007), 916–924 | DOI | MR | Zbl

[17] S. G. Kreĭn, Linear differential equations in Banach space, Transl. Math. Monogr., 29, Amer. Math. Soc., Providence, R.I., 1971, v+390 pp. | MR | MR | Zbl | Zbl

[18] S. K. Godunov, Yu. M. Nechepurenko, “Bounds for the principal and stiff components based on the integral performance criterion for dichotomy”, Comput. Math. Math. Phys., 40:1 (2000), 32–39 | MR | Zbl

[19] Yu. M. Nechepurenko, “On a bound for the norm of a matrix exponential”, Dokl. Math., 63:2 (2001), 233–236 | MR | Zbl

[20] Yu. M. Nechepurenko, “A new bound for the norm of the Green matrix”, Dokl. Math., 63:3 (2001), 362–363 | MR | Zbl

[21] Yu. M. Nechepurenko, “Bounds for the matrix exponential based on the Lyapunov equation and limits of the Hausdorff set”, Comput. Math. Math. Phys., 42:2 (2002), 125–134 | MR | Zbl

[22] A. Ya. Bulgakov, “The basis of guaranteed accuracy in the problem of separation of invariant subspaces for nonselfadjoint matrices. I”, Siberian Adv. Math., 1:1 (1991), 64–108 | MR | MR | Zbl | Zbl

[23] T. Eisner, Stability of operators and operator semigroups, Oper. Theory Adv. Appl., 209, Birkhäuser Verlag, Basel, 2010, viii+204 pp. | MR | Zbl

[24] A. Aldroubi, A. Baskakov, I. Krishtal, “Slanted matrices, Banach frame, and sampling”, J. Funct. Anal., 255:7 (2008), 1667–1691 | DOI | MR | Zbl

[25] A. G. Baskakov, K. I. Chernyshov, “Spectral analysis of linear relations and degenerate operator semigroups”, Sb. Math., 193:11 (2002), 1573–1610 | DOI | DOI | MR | Zbl

[26] A. G. Baskakov, “Spectral analysis of differential operators with unbounded operator-valued coefficients, difference relations and semigroups of difference relations”, Izv. Math., 73:2 (2009), 215–278 | DOI | DOI | MR | Zbl

[27] A. G. Baskakov, “Representation theory for Banach algebras, Abelian groups, and semigroups in the spectral analysis of linear operators”, J. Math. Sci. (N. Y.), 137:4 (2006), 4885–5036 | DOI | MR | Zbl

[28] R. Cross, Multivalued linear operators, Monogr. Textbooks Pure Appl. Math., 213, Marcel Dekker, Inc., New York, 1998, x+335 pp. | MR | Zbl

[29] A. Favini, A. Yagi, Degenerate differential equations in Banach spaces, Monogr. Textbooks Pure Appl. Math., 215, Marcel Dekker, Inc., New York, 1999, xii+313 pp. | MR | Zbl

[30] A. G. Baskakov, A. I. Pastukhov, “Spectral analysis of a weighted shift operator with unbounded operator coefficients”, Siberian Math. J., 42:6 (2001), 1026–1035 | DOI | MR | Zbl

[31] M. S. Bichegkuev, “Bounded solutions of difference inclusions”, Russian Math. (Iz. VUZ), 52:8 (2008), 12–19 | DOI | MR | Zbl

[32] A. G. Baskakov, “Dichotomy of the spectrum of non-self-adjoint operators”, Siberian Math. J., 32:3 (1991), 370–375 | DOI | MR | Zbl

[33] A. G. Baskakov, V. V. Yurgelas, “Indefinite dissipativity and invertibility of linear differential operators”, Ukrainian Math. J., 41:12 (1989), 1385–1389 | DOI | MR | Zbl

[34] A. G. Baskakov, “Methods of abstract harmonic analysis in the perturbation of linear operators”, Siberian Math. J., 24:1 (1983), 17–32 | DOI | MR | Zbl

[35] A. G. Baskakov, “A theorem on splitting an operator, and some related questions in the analytic theory of perturbations”, Math. USSR-Izv., 28:3 (1987), 421–444 | DOI | MR | Zbl

[36] A. G. Baskakov, “Spectral analysis of perturbed nonquasianalytic and spectral operators”, Russian Acad. Sci. Izv. Math., 45:1 (1995), 1–31 | DOI | MR | Zbl

[37] A. G. Baskakov, A. V. Derbushev, A. O. Shcherbakov, “The method of similar operators in the spectral analysis of non-self-adjoint Dirac operators with non-smooth potentials”, Izv. Math., 75:3 (2011), 445–469 | DOI | DOI | MR | Zbl

[38] A. M. Gomilko, “Conditions on the generator of a uniformly bounded $C_0$-semigroup”, Funct. Anal. Appl., 33:4 (1999), 294–296 | DOI | DOI | MR | Zbl

[39] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math., 840, Springer-Verlag, Berlin–New York, 1981, iv+348 pp. | MR | MR | Zbl | Zbl

[40] Yu. L. Daletskii, M. G. Krein, Stability of solutions of differential equations in Banach space, Transl. Math. Monogr., 43, Amer. Math. Soc., Providence, RI, 1974, vi+386 pp. | MR | MR | Zbl | Zbl

[41] I. M. Gel'fand, G. E. Shilov, Generalized functions, v. 3, Theory of differential equations, Academic Press, New York–London, 1967, x+222 pp. | MR | MR | Zbl | Zbl

[42] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Appl. Math. Sci., 44, Springer-Verlag, New York, 1983, viii+279 pp. | DOI | MR | Zbl

[43] A. G. Baskakov, “Estimates for the entries of inverse matrices and the spectral analysis of linear operators”, Izv. Math., 61:6 (1997), 1113–1135 | DOI | DOI | MR | Zbl

[44] A. G. Baskakov, “Wiener's theorem and the asymptotic estimates of the elements of inverse matrices”, Funct. Anal. Appl., 24:3 (1990), 222–224 | DOI | MR | Zbl

[45] A. G. Baskakov, “Abstract harmonic analysis and asymptotic estimates of elements of inverse matrices”, Math. Notes, 52:2 (1992), 764–771 | DOI | MR | Zbl

[46] A. G. Baskakov, “Asymptotic estimates for the entries of the matrices of inverse operators and harmonic analysis”, Siberian Math. J., 38:1 (1997), 10–22 | DOI | MR | Zbl

[47] A. G. Baskakov, I. A. Krishtal, “Memory estimation of inverse operators”, J. Funct Anal., 267:8 (2014), 2551–2605 | DOI | MR | Zbl

[48] A. G. Baskakov, I. A. Krishtal, “Spectral analysis of operators with the two-point Bohr spectrum”, J. Math. Anal. Appl., 302:2 (2005), 420–439 | DOI | MR | Zbl

[49] M. I. Gil', “Difference equations in normed spaces. Stability and oscillations”, North-Holland Math. Stud., 206, Elsevier, Amsterdam, 2007, xvi+362 pp. | MR | Zbl

[50] G. V. Demidenko, I. I. Matveeva, “On stability of solutions to linear systems with periodic coefficients”, Siberian Math. J., 42:2 (2001), 282–296 | DOI | MR | Zbl

[51] M. S. Bichegkuev, “Spectral analysis of difference and differential operators in weighted spaces”, Sb. Math., 204:11 (2013), 1549–1564 | DOI | DOI | MR | Zbl