@article{SM_2015_206_8_a1,
author = {A. G. Baskakov},
title = {Estimates for the {Green's} function and parameters of~exponential dichotomy of a~hyperbolic operator semigroup and linear relations},
journal = {Sbornik. Mathematics},
pages = {1049--1086},
year = {2015},
volume = {206},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_8_a1/}
}
TY - JOUR AU - A. G. Baskakov TI - Estimates for the Green's function and parameters of exponential dichotomy of a hyperbolic operator semigroup and linear relations JO - Sbornik. Mathematics PY - 2015 SP - 1049 EP - 1086 VL - 206 IS - 8 UR - http://geodesic.mathdoc.fr/item/SM_2015_206_8_a1/ LA - en ID - SM_2015_206_8_a1 ER -
%0 Journal Article %A A. G. Baskakov %T Estimates for the Green's function and parameters of exponential dichotomy of a hyperbolic operator semigroup and linear relations %J Sbornik. Mathematics %D 2015 %P 1049-1086 %V 206 %N 8 %U http://geodesic.mathdoc.fr/item/SM_2015_206_8_a1/ %G en %F SM_2015_206_8_a1
A. G. Baskakov. Estimates for the Green's function and parameters of exponential dichotomy of a hyperbolic operator semigroup and linear relations. Sbornik. Mathematics, Tome 206 (2015) no. 8, pp. 1049-1086. http://geodesic.mathdoc.fr/item/SM_2015_206_8_a1/
[1] E. Hille, R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., 31, rev. ed., Amer. Math. Soc., Providence, R. I., 1957, xii+808 pp. | MR | MR | Zbl
[2] A. G. Baskakov, “Semigroups of difference operators in spectral analysis of linear differential operators”, Funct. Anal. Appl., 30:3 (1996), 149–157 | DOI | DOI | MR | Zbl
[3] C. Chicone, Yu. Latushkin, Evolution semigroups in dynamical systems and differential equations, Math. Surveys Monogr., 70, Amer. Math. Soc., Providence, RI, 1999, x+361 pp. | MR | Zbl
[4] A. G. Baskakov, Yu. N. Sintyaev, “Finite-difference operators in the study of differential operators: Solution estimates”, Differ. Equ., 46:2 (2010), 214–223 | DOI | MR | Zbl
[5] A. G. Baskakov, “Analysis of linear differential equations by methods of the spectral theory of difference operators and linear relations”, Russian Math. Surveys, 68:1 (2013), 69–116 | DOI | DOI | MR | Zbl
[6] J. Prüss, “On the spectrum of $C_{0}$-semigroups”, Trans. Amer. Math. Soc., 284:2 (1984), 847–857 | DOI | MR | Zbl
[7] K.-J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, Grad. Texts in Math., 194, Springer-Verlag, New York, 2000, xxii+586 pp. | DOI | MR | Zbl
[8] A. G. Chshiev, “The Gearhart–Prüss theorem for a class of degenerate semigroups of operators”, Math. Notes, 94:3 (2013), 400–413 | DOI | DOI | MR | Zbl
[9] A. G. Baskakov, “Linear relations as generators of semigroups of operators”, Math. Notes, 84:2 (2008), 166–183 | DOI | DOI | MR | Zbl
[10] A. G. Baskakov, A. A. Vorobjev, M. Yu. Romanova, “Hyperbolic operator semigroups and Lyapunov's equation”, Math. Notes, 89:2 (2011), 194–205 | DOI | DOI | MR | Zbl
[11] A. G. Baskakov, K. S. Kobychev, “Estimates for the embedding operator of a Sobolev space of periodic functions and for the solutions of differential equations with periodic coefficients”, Differ. Equ., 47:5 (2011), 609–619 | DOI | MR | Zbl
[12] L. A. Lusternik, V. J. Sobolev, Elements of functional analysis, Hindustan Publishing Corp., Delhi; John Wiley Sons, Inc., New York, 1974, x+322 pp. | MR | MR | Zbl | Zbl
[13] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966, xix+592 pp. | MR | MR | Zbl | Zbl
[14] S. K. Godunov, Modern aspects of linear algebra, Transl. Math. Monogr., 175, Amer. Math. Soc., Providence, RI, 1998, xvi+303 pp. | MR | Zbl | Zbl
[15] A. G. Baskakov, “Estimates of bounded solutions of linear differential equations”, Differ. Equ., 39:3 (2003), 447–450 | DOI | MR | Zbl
[16] A. I. Perov, “Frequency tests for the existence of boundary solutions”, Differ. Equ., 43:7 (2007), 916–924 | DOI | MR | Zbl
[17] S. G. Kreĭn, Linear differential equations in Banach space, Transl. Math. Monogr., 29, Amer. Math. Soc., Providence, R.I., 1971, v+390 pp. | MR | MR | Zbl | Zbl
[18] S. K. Godunov, Yu. M. Nechepurenko, “Bounds for the principal and stiff components based on the integral performance criterion for dichotomy”, Comput. Math. Math. Phys., 40:1 (2000), 32–39 | MR | Zbl
[19] Yu. M. Nechepurenko, “On a bound for the norm of a matrix exponential”, Dokl. Math., 63:2 (2001), 233–236 | MR | Zbl
[20] Yu. M. Nechepurenko, “A new bound for the norm of the Green matrix”, Dokl. Math., 63:3 (2001), 362–363 | MR | Zbl
[21] Yu. M. Nechepurenko, “Bounds for the matrix exponential based on the Lyapunov equation and limits of the Hausdorff set”, Comput. Math. Math. Phys., 42:2 (2002), 125–134 | MR | Zbl
[22] A. Ya. Bulgakov, “The basis of guaranteed accuracy in the problem of separation of invariant subspaces for nonselfadjoint matrices. I”, Siberian Adv. Math., 1:1 (1991), 64–108 | MR | MR | Zbl | Zbl
[23] T. Eisner, Stability of operators and operator semigroups, Oper. Theory Adv. Appl., 209, Birkhäuser Verlag, Basel, 2010, viii+204 pp. | MR | Zbl
[24] A. Aldroubi, A. Baskakov, I. Krishtal, “Slanted matrices, Banach frame, and sampling”, J. Funct. Anal., 255:7 (2008), 1667–1691 | DOI | MR | Zbl
[25] A. G. Baskakov, K. I. Chernyshov, “Spectral analysis of linear relations and degenerate operator semigroups”, Sb. Math., 193:11 (2002), 1573–1610 | DOI | DOI | MR | Zbl
[26] A. G. Baskakov, “Spectral analysis of differential operators with unbounded operator-valued coefficients, difference relations and semigroups of difference relations”, Izv. Math., 73:2 (2009), 215–278 | DOI | DOI | MR | Zbl
[27] A. G. Baskakov, “Representation theory for Banach algebras, Abelian groups, and semigroups in the spectral analysis of linear operators”, J. Math. Sci. (N. Y.), 137:4 (2006), 4885–5036 | DOI | MR | Zbl
[28] R. Cross, Multivalued linear operators, Monogr. Textbooks Pure Appl. Math., 213, Marcel Dekker, Inc., New York, 1998, x+335 pp. | MR | Zbl
[29] A. Favini, A. Yagi, Degenerate differential equations in Banach spaces, Monogr. Textbooks Pure Appl. Math., 215, Marcel Dekker, Inc., New York, 1999, xii+313 pp. | MR | Zbl
[30] A. G. Baskakov, A. I. Pastukhov, “Spectral analysis of a weighted shift operator with unbounded operator coefficients”, Siberian Math. J., 42:6 (2001), 1026–1035 | DOI | MR | Zbl
[31] M. S. Bichegkuev, “Bounded solutions of difference inclusions”, Russian Math. (Iz. VUZ), 52:8 (2008), 12–19 | DOI | MR | Zbl
[32] A. G. Baskakov, “Dichotomy of the spectrum of non-self-adjoint operators”, Siberian Math. J., 32:3 (1991), 370–375 | DOI | MR | Zbl
[33] A. G. Baskakov, V. V. Yurgelas, “Indefinite dissipativity and invertibility of linear differential operators”, Ukrainian Math. J., 41:12 (1989), 1385–1389 | DOI | MR | Zbl
[34] A. G. Baskakov, “Methods of abstract harmonic analysis in the perturbation of linear operators”, Siberian Math. J., 24:1 (1983), 17–32 | DOI | MR | Zbl
[35] A. G. Baskakov, “A theorem on splitting an operator, and some related questions in the analytic theory of perturbations”, Math. USSR-Izv., 28:3 (1987), 421–444 | DOI | MR | Zbl
[36] A. G. Baskakov, “Spectral analysis of perturbed nonquasianalytic and spectral operators”, Russian Acad. Sci. Izv. Math., 45:1 (1995), 1–31 | DOI | MR | Zbl
[37] A. G. Baskakov, A. V. Derbushev, A. O. Shcherbakov, “The method of similar operators in the spectral analysis of non-self-adjoint Dirac operators with non-smooth potentials”, Izv. Math., 75:3 (2011), 445–469 | DOI | DOI | MR | Zbl
[38] A. M. Gomilko, “Conditions on the generator of a uniformly bounded $C_0$-semigroup”, Funct. Anal. Appl., 33:4 (1999), 294–296 | DOI | DOI | MR | Zbl
[39] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math., 840, Springer-Verlag, Berlin–New York, 1981, iv+348 pp. | MR | MR | Zbl | Zbl
[40] Yu. L. Daletskii, M. G. Krein, Stability of solutions of differential equations in Banach space, Transl. Math. Monogr., 43, Amer. Math. Soc., Providence, RI, 1974, vi+386 pp. | MR | MR | Zbl | Zbl
[41] I. M. Gel'fand, G. E. Shilov, Generalized functions, v. 3, Theory of differential equations, Academic Press, New York–London, 1967, x+222 pp. | MR | MR | Zbl | Zbl
[42] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Appl. Math. Sci., 44, Springer-Verlag, New York, 1983, viii+279 pp. | DOI | MR | Zbl
[43] A. G. Baskakov, “Estimates for the entries of inverse matrices and the spectral analysis of linear operators”, Izv. Math., 61:6 (1997), 1113–1135 | DOI | DOI | MR | Zbl
[44] A. G. Baskakov, “Wiener's theorem and the asymptotic estimates of the elements of inverse matrices”, Funct. Anal. Appl., 24:3 (1990), 222–224 | DOI | MR | Zbl
[45] A. G. Baskakov, “Abstract harmonic analysis and asymptotic estimates of elements of inverse matrices”, Math. Notes, 52:2 (1992), 764–771 | DOI | MR | Zbl
[46] A. G. Baskakov, “Asymptotic estimates for the entries of the matrices of inverse operators and harmonic analysis”, Siberian Math. J., 38:1 (1997), 10–22 | DOI | MR | Zbl
[47] A. G. Baskakov, I. A. Krishtal, “Memory estimation of inverse operators”, J. Funct Anal., 267:8 (2014), 2551–2605 | DOI | MR | Zbl
[48] A. G. Baskakov, I. A. Krishtal, “Spectral analysis of operators with the two-point Bohr spectrum”, J. Math. Anal. Appl., 302:2 (2005), 420–439 | DOI | MR | Zbl
[49] M. I. Gil', “Difference equations in normed spaces. Stability and oscillations”, North-Holland Math. Stud., 206, Elsevier, Amsterdam, 2007, xvi+362 pp. | MR | Zbl
[50] G. V. Demidenko, I. I. Matveeva, “On stability of solutions to linear systems with periodic coefficients”, Siberian Math. J., 42:2 (2001), 282–296 | DOI | MR | Zbl
[51] M. S. Bichegkuev, “Spectral analysis of difference and differential operators in weighted spaces”, Sb. Math., 204:11 (2013), 1549–1564 | DOI | DOI | MR | Zbl