Estimates for integral norms of polynomials on spaces with convex measures
Sbornik. Mathematics, Tome 206 (2015) no. 8, pp. 1030-1048 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that measurable polynomials of degree $d$ are integrable to every positive power and all their $L^p$-norms are equivalent. We also prove a zero-one law for level sets of measurable polynomials and for sets of convergence of measurable polynomials of fixed degree on spaces with convex measures. We obtain an estimate for the $L^1$-norm of continuous polynomials in terms of the $L^1$-norm of their restriction to any set of positive measure. Bibliography: 19 titles.
Keywords: convex measures, logarithmically convex measures, measurable polynomials.
@article{SM_2015_206_8_a0,
     author = {L. M. Arutyunyan and E. D. Kosov},
     title = {Estimates for integral norms of polynomials on spaces with convex measures},
     journal = {Sbornik. Mathematics},
     pages = {1030--1048},
     year = {2015},
     volume = {206},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_8_a0/}
}
TY  - JOUR
AU  - L. M. Arutyunyan
AU  - E. D. Kosov
TI  - Estimates for integral norms of polynomials on spaces with convex measures
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 1030
EP  - 1048
VL  - 206
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_8_a0/
LA  - en
ID  - SM_2015_206_8_a0
ER  - 
%0 Journal Article
%A L. M. Arutyunyan
%A E. D. Kosov
%T Estimates for integral norms of polynomials on spaces with convex measures
%J Sbornik. Mathematics
%D 2015
%P 1030-1048
%V 206
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2015_206_8_a0/
%G en
%F SM_2015_206_8_a0
L. M. Arutyunyan; E. D. Kosov. Estimates for integral norms of polynomials on spaces with convex measures. Sbornik. Mathematics, Tome 206 (2015) no. 8, pp. 1030-1048. http://geodesic.mathdoc.fr/item/SM_2015_206_8_a0/

[1] V. I. Bogachev, Gaussian measures, Math. Surveys Monogr., 62, Amer. Math. Soc., Providence, RI, 1998, xii+433 pp. | DOI | MR | MR | Zbl | Zbl

[2] V. I. Bogachev, “Gaussian measures on infinite-dimensional spaces”, Real and stochastic analysis, World Sci. Publ., Hackensack, NJ, 2014, 1–83 | DOI | MR

[3] C. Borell, “Convex measures on locally convex spaces”, Ark. Mat., 12:1-2 (1974), 239–252 | DOI | MR | Zbl

[4] S. G. Bobkov, “Remarks on the growth of $L^p$-norms of polynomials”, Geometric aspects of functional analysis, Lecture Notes in Math., 1745, Springer, Berlin, 2000, 27–35 | DOI | MR | Zbl

[5] V. Berezhnoy, “On the equivalence of integral norms on the space of measurable polynomials with respect to a convex measure”, Theory Stoch. Process., 14:1 (2008), 7–10 | MR | Zbl

[6] J. Bourgain, “On the distribution of polynomials on high dimensional convex sets”, Geometric aspects of functional analysis (1989-90), Lecture Notes in Math., 1469, Springer, Berlin, 1991, 127–137 | DOI | MR | Zbl

[7] R. Latała, “On the equivalence between geometric and arithmetic means for log-concave measures”, Convex geometric analysis (Berkeley, CA, 1996), Math. Sci. Res. Inst. Publ., 34, Cambridge Univ. Press, Cambridge, 1999, 123–127 | MR | Zbl

[8] V. I. Bogachev, Measure theory, v. 2, Springer-Verlag, Berlin, 2007, xiv+575 pp. | DOI | MR | Zbl

[9] V. I. Bogachev, Differentiable measures and the Malliavin calculus, Math. Surveys Monogr., 164, Amer. Math. Soc., Providence, RI, 2010, xvi+488 pp. | DOI | MR | Zbl

[10] L. M. Arutyunyan, I. S. Yaroslavtsev, “On measurable polynomials on infinite-dimensional spaces”, Dokl. Math., 87:2 (2013), 214–217 | DOI | DOI | MR | Zbl

[11] L. M. Arutyunyan, E. D. Kosov, I. S. Yaroslavtsev, “On some properties of polynomials measurable with respect to a Gaussian measure”, Dokl. Math., 90:1 (2014), 419–423 | DOI | DOI | MR | Zbl

[12] S. G. Bobkov, J. Melbourne, Hyperbolic measures on infinite dimensional spaces, arXiv: 1405.2961

[13] F. Nazarov, M. Sodin, A. Vol'berg, “The geometric Kannan–Lovász–Simonovits lemma, dimension-free estimates for the distribution of the values of polynomials, and the distribution of the zeros of random analytic functions”, St. Petersburg Math. J., 14:2 (2003), 351–366 | MR | Zbl

[14] E. J. Remez, “Sur une propriété extremale des polynômes de Tschebychef”, Soobsch. Khark. mat. o-va, 13:1 (1936), 93–95

[15] P. Borwein, T. Erdélyi, Polynomials and polynomial inequalities, Grad. Texts in Math., 161, Springer-Verlag, New York, 1995, x+480 pp. | DOI | MR | Zbl

[16] S. G. Bobkov, “Some generalizations of Prokhorov's results on Khinchin-type inequalities for polynomials”, Theory Probab. Appl., 45:4 (2001), 644–647 | DOI | DOI | MR | Zbl

[17] A. Carbery, J. Wright, “Distributional and $L^q$ norm inequalities for polynomials over convex bodies in $\mathbb R^n$”, Math. Res. Lett., 8:3 (2001), 233–248 | DOI | MR | Zbl

[18] L. Lovász, M. Simonovits, “Random walks in a convex body and an improved volume algorithm”, Random Structures Algorithms, 4:4 (1993), 359–412 | DOI | MR | Zbl

[19] R. Kannan, L. Lovász, M. Simonovits, “Isoperimetric problems for convex bodies and a localization lemma”, Discrete Comput. Geom., 13:1 (1995), 541–559 | DOI | MR | Zbl