Estimates for integral norms of polynomials on spaces with convex measures
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 206 (2015) no. 8, pp. 1030-1048
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We show that measurable polynomials of degree $d$ are
integrable to every positive power and all their $L^p$-norms are
equivalent. We also prove a zero-one law for level sets of measurable polynomials
and for sets of convergence of measurable polynomials of fixed degree
on spaces with convex measures. We obtain an estimate for the $L^1$-norm of continuous polynomials in terms of the $L^1$-norm
of their restriction to any set of positive measure.
Bibliography: 19 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
convex measures, logarithmically convex measures, measurable polynomials.
                    
                    
                    
                  
                
                
                @article{SM_2015_206_8_a0,
     author = {L. M. Arutyunyan and E. D. Kosov},
     title = {Estimates for integral norms of polynomials on spaces with convex measures},
     journal = {Sbornik. Mathematics},
     pages = {1030--1048},
     publisher = {mathdoc},
     volume = {206},
     number = {8},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_8_a0/}
}
                      
                      
                    TY - JOUR AU - L. M. Arutyunyan AU - E. D. Kosov TI - Estimates for integral norms of polynomials on spaces with convex measures JO - Sbornik. Mathematics PY - 2015 SP - 1030 EP - 1048 VL - 206 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2015_206_8_a0/ LA - en ID - SM_2015_206_8_a0 ER -
L. M. Arutyunyan; E. D. Kosov. Estimates for integral norms of polynomials on spaces with convex measures. Sbornik. Mathematics, Tome 206 (2015) no. 8, pp. 1030-1048. http://geodesic.mathdoc.fr/item/SM_2015_206_8_a0/