@article{SM_2015_206_8_a0,
author = {L. M. Arutyunyan and E. D. Kosov},
title = {Estimates for integral norms of polynomials on spaces with convex measures},
journal = {Sbornik. Mathematics},
pages = {1030--1048},
year = {2015},
volume = {206},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_8_a0/}
}
L. M. Arutyunyan; E. D. Kosov. Estimates for integral norms of polynomials on spaces with convex measures. Sbornik. Mathematics, Tome 206 (2015) no. 8, pp. 1030-1048. http://geodesic.mathdoc.fr/item/SM_2015_206_8_a0/
[1] V. I. Bogachev, Gaussian measures, Math. Surveys Monogr., 62, Amer. Math. Soc., Providence, RI, 1998, xii+433 pp. | DOI | MR | MR | Zbl | Zbl
[2] V. I. Bogachev, “Gaussian measures on infinite-dimensional spaces”, Real and stochastic analysis, World Sci. Publ., Hackensack, NJ, 2014, 1–83 | DOI | MR
[3] C. Borell, “Convex measures on locally convex spaces”, Ark. Mat., 12:1-2 (1974), 239–252 | DOI | MR | Zbl
[4] S. G. Bobkov, “Remarks on the growth of $L^p$-norms of polynomials”, Geometric aspects of functional analysis, Lecture Notes in Math., 1745, Springer, Berlin, 2000, 27–35 | DOI | MR | Zbl
[5] V. Berezhnoy, “On the equivalence of integral norms on the space of measurable polynomials with respect to a convex measure”, Theory Stoch. Process., 14:1 (2008), 7–10 | MR | Zbl
[6] J. Bourgain, “On the distribution of polynomials on high dimensional convex sets”, Geometric aspects of functional analysis (1989-90), Lecture Notes in Math., 1469, Springer, Berlin, 1991, 127–137 | DOI | MR | Zbl
[7] R. Latała, “On the equivalence between geometric and arithmetic means for log-concave measures”, Convex geometric analysis (Berkeley, CA, 1996), Math. Sci. Res. Inst. Publ., 34, Cambridge Univ. Press, Cambridge, 1999, 123–127 | MR | Zbl
[8] V. I. Bogachev, Measure theory, v. 2, Springer-Verlag, Berlin, 2007, xiv+575 pp. | DOI | MR | Zbl
[9] V. I. Bogachev, Differentiable measures and the Malliavin calculus, Math. Surveys Monogr., 164, Amer. Math. Soc., Providence, RI, 2010, xvi+488 pp. | DOI | MR | Zbl
[10] L. M. Arutyunyan, I. S. Yaroslavtsev, “On measurable polynomials on infinite-dimensional spaces”, Dokl. Math., 87:2 (2013), 214–217 | DOI | DOI | MR | Zbl
[11] L. M. Arutyunyan, E. D. Kosov, I. S. Yaroslavtsev, “On some properties of polynomials measurable with respect to a Gaussian measure”, Dokl. Math., 90:1 (2014), 419–423 | DOI | DOI | MR | Zbl
[12] S. G. Bobkov, J. Melbourne, Hyperbolic measures on infinite dimensional spaces, arXiv: 1405.2961
[13] F. Nazarov, M. Sodin, A. Vol'berg, “The geometric Kannan–Lovász–Simonovits lemma, dimension-free estimates for the distribution of the values of polynomials, and the distribution of the zeros of random analytic functions”, St. Petersburg Math. J., 14:2 (2003), 351–366 | MR | Zbl
[14] E. J. Remez, “Sur une propriété extremale des polynômes de Tschebychef”, Soobsch. Khark. mat. o-va, 13:1 (1936), 93–95
[15] P. Borwein, T. Erdélyi, Polynomials and polynomial inequalities, Grad. Texts in Math., 161, Springer-Verlag, New York, 1995, x+480 pp. | DOI | MR | Zbl
[16] S. G. Bobkov, “Some generalizations of Prokhorov's results on Khinchin-type inequalities for polynomials”, Theory Probab. Appl., 45:4 (2001), 644–647 | DOI | DOI | MR | Zbl
[17] A. Carbery, J. Wright, “Distributional and $L^q$ norm inequalities for polynomials over convex bodies in $\mathbb R^n$”, Math. Res. Lett., 8:3 (2001), 233–248 | DOI | MR | Zbl
[18] L. Lovász, M. Simonovits, “Random walks in a convex body and an improved volume algorithm”, Random Structures Algorithms, 4:4 (1993), 359–412 | DOI | MR | Zbl
[19] R. Kannan, L. Lovász, M. Simonovits, “Isoperimetric problems for convex bodies and a localization lemma”, Discrete Comput. Geom., 13:1 (1995), 541–559 | DOI | MR | Zbl