The generalized divisor problem with natural numbers of a special form
Sbornik. Mathematics, Tome 206 (2015) no. 7, pp. 1020-1029 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An asymptotic formula with a uniform bound for the remainder term is obtained for the sum of the values of the generalized divisor function over those positive integers whose prime divisor have binary representations of a special form. Bibliography: 12 titles.
Keywords: generalized divisor problem, binary representations, asymptotic formula, uniform bound for the remainder term.
@article{SM_2015_206_7_a5,
     author = {K. M. Eminyan},
     title = {The generalized divisor problem with natural numbers of a~special form},
     journal = {Sbornik. Mathematics},
     pages = {1020--1029},
     year = {2015},
     volume = {206},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_7_a5/}
}
TY  - JOUR
AU  - K. M. Eminyan
TI  - The generalized divisor problem with natural numbers of a special form
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 1020
EP  - 1029
VL  - 206
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_7_a5/
LA  - en
ID  - SM_2015_206_7_a5
ER  - 
%0 Journal Article
%A K. M. Eminyan
%T The generalized divisor problem with natural numbers of a special form
%J Sbornik. Mathematics
%D 2015
%P 1020-1029
%V 206
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2015_206_7_a5/
%G en
%F SM_2015_206_7_a5
K. M. Eminyan. The generalized divisor problem with natural numbers of a special form. Sbornik. Mathematics, Tome 206 (2015) no. 7, pp. 1020-1029. http://geodesic.mathdoc.fr/item/SM_2015_206_7_a5/

[1] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, v. 2, B. G. Teubner, Leipzig–Berlin, 1909, ix+567–961 pp. | MR | Zbl

[2] B. M. Bredikhin, “Ostatochnyi chlen v asimptoticheskoi formule dlya funktsii $\nu_G(x)$”, Izv. vuzov. Matem., 1960, no. 6, 40–49 | MR | Zbl

[3] E. Wirsing, “Das asymptotische Verhalten von Summen über multiplikative Funktionen”, Math. Ann., 143:1 (1961), 75–102 | DOI | MR | Zbl

[4] B. V. Levin, A. S. Fainleib, “Application of some integral equations to problems of number theory”, Russian Math. Surveys, 22:3 (1967), 119–204 | DOI | MR | Zbl

[5] A. G. Postnikov, Introduction to analytic number theory, Transl. Math. Monogr., 68, Amer. Math. Soc., Providence, RI, 1988, vi+320 pp. | MR | MR | Zbl | Zbl

[6] M. E. Changa, “Numbers whose prime divisors lie in special intervals”, Izv. Math., 67:4 (2003), 837–848 | DOI | DOI | MR | Zbl

[7] C. Mauduit, J. Rivat, “Sur un problème de Gelfond: la somme des chiffres des nombres premiers”, Ann. of Math. (2), 171:3 (2010), 1591–1646 | DOI | MR | Zbl

[8] B. Green, “Three topics in additive prime number theory”, Current developments in mathematics, 2007, Int. Press, Somerville, MA, 2009, 1–41 ; arXiv: 0710.0823 | MR | Zbl

[9] A. Karatsuba, Basic analytic number theory, Springer-Verlag, Berlin, 1993 | MR | MR | Zbl

[10] A. Karatsuba, S. M. Voronin, The Riemann zeta-function, De Gruyter Exp. Math., 5, Walter de Gruyter Co., Berlin, 1992, xii+396 pp. | MR | MR | Zbl | Zbl

[11] M. A. Lawrentjew, B. W. Schabat, Methoden der komplexen Funktionentheorie, Math. Naturwiss. Tech., 13, Deutscher Verlag Wissensch., Berlin, 1967, x+846 pp. | MR | MR | Zbl | Zbl

[12] A. A. Karatsuba, “Uniform approximation of the remainder term in the Dirichlet divisor problem”, Math. USSR-Izv., 6:3 (1972), 467–475 | DOI | MR | Zbl