The distribution of solutions of a determinantal equation
Sbornik. Mathematics, Tome 206 (2015) no. 7, pp. 988-1019 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In 1964, Linnik and Skubenko established the equidistribution of the integral points on the determinantal surface $\det X=P$, where $X$ is a $(3\times 3)$ matrix with independent entries and $P$ is an increasing parameter. Their method involved reducing the problem by one dimension (that is, to the determinantal equations with a $(2\times 2)$ matrix). In this paper a more precise version of the Linnik-Skubenko reduction is proposed. It can be applied to a wider range of problems arising in the geometry of numbers and in the theory of three-dimensional Voronoi-Minkowski continued fractions. Bibliography: 24 titles.
Keywords: lattices, Kloosterman sums.
@article{SM_2015_206_7_a4,
     author = {A. V. Ustinov},
     title = {The distribution of solutions of a~determinantal equation},
     journal = {Sbornik. Mathematics},
     pages = {988--1019},
     year = {2015},
     volume = {206},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_7_a4/}
}
TY  - JOUR
AU  - A. V. Ustinov
TI  - The distribution of solutions of a determinantal equation
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 988
EP  - 1019
VL  - 206
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_7_a4/
LA  - en
ID  - SM_2015_206_7_a4
ER  - 
%0 Journal Article
%A A. V. Ustinov
%T The distribution of solutions of a determinantal equation
%J Sbornik. Mathematics
%D 2015
%P 988-1019
%V 206
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2015_206_7_a4/
%G en
%F SM_2015_206_7_a4
A. V. Ustinov. The distribution of solutions of a determinantal equation. Sbornik. Mathematics, Tome 206 (2015) no. 7, pp. 988-1019. http://geodesic.mathdoc.fr/item/SM_2015_206_7_a4/

[1] Yu. V. Linnik, B. F. Skubenko, “Asimptoticheskoe raspredelenie tselochislennykh matrits tretego poryadka”, Vestn. LGU. Ser. Matem. Mekh. Astron., 1964, no. 13, 25–36 | MR | Zbl

[2] Yu. V. Linnik, “Additive problems and eigenvalues of the modular operators”, Proceedings of the International Congress of Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, 270–284 | MR | Zbl

[3] Yu. V. Linnik, Ergodic properties of algebraic fields, Ergeb. Math. Grenzgeb., 45, Springer-Verlag, New York, 1968, ix+192 pp. | MR | MR | Zbl | Zbl

[4] I. E. Shparlinski, “Modular hyperbolas”, Jpn. J. Math., 7:2 (2012), 235–294 | DOI | MR | Zbl

[5] B. F. Skubenko, “On the distribution of integral matrices and the evaluation of the fundamental domain of the unimodular group of matrices”, Proc. Steklov Inst. Math., 80 (1965), 147–163 | MR | Zbl

[6] A. M. Istamov, “Asymptotics of second-order integral matrices lying in a given hyperbolic region and belonging to a given residue class”, J. Soviet Math., 19:2 (1982), 1085–1088 | DOI | MR | Zbl

[7] A. M. Istamov, “Asymptotic distribution of $n$-th-order integral matrices belonging to a given residue class”, J. Soviet Math., 25:2 (1984), 1030–1051 | DOI | MR | Zbl

[8] E. V. Podsypanin, “Distribution of integral points on the determinant surface”, J. Soviet Math., 19:2 (1982), 1088–1095 | DOI | MR | Zbl

[9] Wee Teck Gan, Hee Oh, “Equidistribution of integer points on a family of homogeneous varieties: a problem of Linnik”, Compositio Math., 136:3 (2003), 323–352 | DOI | MR | Zbl

[10] P. C. Sarnak, “Diophantine problems and linear groups”, Proceedings of the International Congress of Mathematicians, v. I, Math. Soc. Japan, Kyoto, Japan, 1990, 1991, 459–471 | MR | Zbl

[11] G. F. Voronoi, Ob odnom obobschenii algorifma nepreryvnykh drobei, Tipografiya Varshavskogo uchebnogo okruga, Varshava, 1896, 221 pp.

[12] G. F. Voronoi, Sobranie sochinenii, v. 1, Izd-vo AN USSR, Kiev, 1952, 399 pp. | MR | Zbl

[13] H. Minkowski, “Généralisation de la théorie des fraction continues”, Ann. Sci. Ècole Norm. Sup. (3), 13 (1896), 41–60 | MR | Zbl

[14] B. N. Delone, D. K. Faddeev, “Teoriya irratsionalnostei tretei stepeni”, Tr. Matem. in-ta im. V. A. Steklova, 11, Izd-vo AN SSSR, M.–L., 1940, 3–340 | MR | Zbl

[15] B. N. Delone, Peterburgskaya shkola teorii chisel, Izd-vo AN SSSR, M.–L., 1947, 421 pp. | MR | Zbl

[16] H. Hancock, Development of the Minkowski geometry of numbers, v. 1, Dover Publications, Inc., New York, 1964, xix+452 pp. | MR | Zbl

[17] A. A. Illarionov, “The average number of relative minima of three-dimensional integer lattices of a given determinant”, Izv. Math., 76:3 (2012), 535–562 | DOI | DOI | MR | Zbl

[18] J. W. Porter, “On a theorem of Heilbronn”, Mathematika, 22:1 (1975), 20–28 | DOI | MR | Zbl

[19] A. V. Ustinov, “Trekhmernye tsepnye drobi i summy Klostermana”, UMN, 70:3 (2015), 107–180 | DOI

[20] V. I. Bernik, A. V. Ustinov, “O raspredelenii tochek modulyarnoi giperboly”, Dalnevost. matem. zhurn., 14:2 (2014), 141–155

[21] A. V. Ustinov, “On the number of solutions of the congruence $xy\equiv l$ $(\operatorname{mod}q)$ under the graph of a twice continuously differentiable function”, St. Petersburg Math. J., 20:5 (2009), 813–836 | DOI | MR | Zbl

[22] T. Estermann, “On Kloosterman's sum”, Mathematika, 8:1 (1961), 83–86 | DOI | MR | Zbl

[23] A. V. Ustinov, “On a generalization of Kloosterman sums”, Math. Notes, 97:1 (2015), 147–151 | DOI | DOI

[24] G. H. Hardy, E. M. Write, An introduction to the theory of numbers, 5th ed., Clarendon Press, Oxford, 1979, xvi+426 pp. | MR | Zbl