Convergence of Fourier series in classical systems
Sbornik. Mathematics, Tome 206 (2015) no. 7, pp. 941-979

Voir la notice de l'article provenant de la source Math-Net.Ru

The following results are proved: there exists an integrable function such that any subsequence of the Cesàro means of negative order of the Fourier series of this function diverges almost everywhere; the values of an arbitrary integrable function can be changed on a set (independent of this function) of arbitrarily small measure so that the Fourier series with respect to both the Franklin system and the Haar system of the ‘modified’ function will be absolutely convergent almost everywhere on $[0,1]$; there exists a continuous function which features an unremovable absolute divergence. Bibliography: 47 titles.
Keywords: Fourier series, classical systems, Cesàro means, almost everywhere convergence, convergence in the norm, absolute convergence.
@article{SM_2015_206_7_a2,
     author = {L. N. Galoyan and M. G. Grigoryan and A. Kh. Kobelyan},
     title = {Convergence of {Fourier} series in classical systems},
     journal = {Sbornik. Mathematics},
     pages = {941--979},
     publisher = {mathdoc},
     volume = {206},
     number = {7},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_7_a2/}
}
TY  - JOUR
AU  - L. N. Galoyan
AU  - M. G. Grigoryan
AU  - A. Kh. Kobelyan
TI  - Convergence of Fourier series in classical systems
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 941
EP  - 979
VL  - 206
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_7_a2/
LA  - en
ID  - SM_2015_206_7_a2
ER  - 
%0 Journal Article
%A L. N. Galoyan
%A M. G. Grigoryan
%A A. Kh. Kobelyan
%T Convergence of Fourier series in classical systems
%J Sbornik. Mathematics
%D 2015
%P 941-979
%V 206
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2015_206_7_a2/
%G en
%F SM_2015_206_7_a2
L. N. Galoyan; M. G. Grigoryan; A. Kh. Kobelyan. Convergence of Fourier series in classical systems. Sbornik. Mathematics, Tome 206 (2015) no. 7, pp. 941-979. http://geodesic.mathdoc.fr/item/SM_2015_206_7_a2/