Mots-clés : Cesàro means
@article{SM_2015_206_7_a2,
author = {L. N. Galoyan and M. G. Grigoryan and A. Kh. Kobelyan},
title = {Convergence of {Fourier} series in classical systems},
journal = {Sbornik. Mathematics},
pages = {941--979},
year = {2015},
volume = {206},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_7_a2/}
}
L. N. Galoyan; M. G. Grigoryan; A. Kh. Kobelyan. Convergence of Fourier series in classical systems. Sbornik. Mathematics, Tome 206 (2015) no. 7, pp. 941-979. http://geodesic.mathdoc.fr/item/SM_2015_206_7_a2/
[1] N. N. Luzin', “K' osnovnoi teoremѣ integralnago ischisleniya”, Matem. sb., 28:2 (1912), 266–294 | Zbl
[2] D. Menchoff, “Sur la convergence uniforme des séries de Fourier”, Matem. sb., 11(53):1–2 (1942), 67–96 | MR | Zbl
[3] M. G. Grigorian, “On the convergence of Fourier series in the metric of $L^{1}$”, Anal. Math., 17:3 (1991), 211–237 | DOI | MR | Zbl
[4] D. E. Men'shov, “Properties of Cesàro means of negative order and of certain other $T$-means for Fourier series of continuous functions”, Math. USSR-Sb., 15:3 (1971), 415–441 | DOI | MR | Zbl
[5] B. S. Kashin, G. G. Kosheleva, “An approach to “correction” theorems”, Moscow Univ. Math. Bull., 43:4 (1988), 1–5 | MR | Zbl
[6] M. G. Grigoryan, T. M. Grigoryan, “On the absolute convergece Schauder series”, Adv. Theor. Appl. Math., 9:1 (2014), 11–14
[7] D. E. Men'shov, “Properties of Cesàro means of negative order for Fourier series of summable functions”, Proc. Steklov Inst. Math., 134 (1977), 229–245 | MR | Zbl
[8] G. G. Gevorkyan, “O predstavlenii izmerimykh funktsii absolyutno skhodyaschimisya ryadami po sisteme Franklina”, Dokl. AN Arm.SSR, 83:1 (1986), 15–18 | MR | Zbl
[9] L. D. Gogoladze, T. Sh. Zerekidze, “O sopryazhennykh funktsiyakh neskolkikh peremennykh”, Soobsch. AN Gruz. SSR, 94:3 (1979), 541–544 | MR | Zbl
[10] K. I. Oskolkov, “Uniform modulus of continuity of summable functions on sets of positive measure”, Soviet Math. Dokl., 17 (1976), 1028–1031 | MR | Zbl
[11] Sh. V. Kheladze, “Convergence of Fourier series almost everywhere and in the $L$-metric”, Math. USSR-Sb., 35 (1979), 527–534 pp. | DOI | MR | Zbl
[12] S. V. Kislyakov, “Kolichestvennyi aspekt teorem ob ispravlenii”, Issledovaniya po lineinym operatoram i teorii funktsii. IX, Zap. nauchn. sem. LOMI, 92, Izd-vo «Nauka», Leningrad. otd., L., 1979, 182–191 | MR | Zbl
[13] M. G. Grigorian, “On convergence of Fourier series in complete orthonormal systems in the $L^{1}$ metric and almost everywhere”, Math. USSR-Sb., 70:2 (1991), 445–466 | DOI | MR | Zbl
[14] S. A. Episkoposian, M. G. Grigorian, “$L^{p}$-convergence of greedy algorithm by generalized Walsh system”, J. Math. Anal. Appl., 389:2 (2012), 1374–1379 | DOI | MR | Zbl
[15] M. G. Grigoryan, S. L. Gogyan, “Nelineinaya approksimatsiya po sisteme Khaara i modifikatsii funktsii”, Anal. Math., 32:1 (2006), 49–80 | DOI | MR | Zbl
[16] M. G. Grigorian, K. S. Kazarian, F. Soria, “Mean convergence of orthonormal Fourier series of modified functions”, Trans. Amer. Math. Soc., 352:8 (2000), 3777–3798 | DOI | MR | Zbl
[17] M. G. Grigoryan, “On the $L^p_\mu$-strong property of orthonormal systems”, Sb. Math., 194:10 (2003), 1503–1532 | DOI | DOI | MR | Zbl
[18] M. Grigoryan, “Uniform convergence of the greedy algorithm with respect to the Walsh system”, Studia. Math., 198:2 (2010), 197–206 | DOI | MR | Zbl
[19] M. G. Grigoryan, “Modifications of functions, Fourier coefficients and nonlinear approximation”, Sb. Math., 203:3 (2012), 351–379 | DOI | DOI | MR | Zbl
[20] M. G. Grigoryan, A. A. Sargsyan, “Non-linear approximation of continuous functions by the Faber–Schauder system”, Sb. Math., 199:5 (2008), 629–653 | DOI | DOI | MR | Zbl
[21] M. G. Grigorian, R. E. Zink, “Greedy approximation with respect to certain subsystems of the Walsh orthonormal system”, Proc. Amer. Math. Soc., 134:12 (2006), 3495–3505 | DOI | MR | Zbl
[22] A. Kh. Kobelyan, “On the Fourier–Haar coefficients of functions from $L_p$”, International conference “Harmonic analysis and approximations, IV” (Tsaghkadzor, Armenia), 2008, 73–74
[23] M. Grigoryan, A. Kobelyan, “On the convergence of hard sampling operators”, Second International conference “Mathematics in Armenia: advances and perspectives” (Tsaghkadzor, Armenia, 2013), 2013, 45–46
[24] A. Kh. Kobelyan, “O skhodimosti v $L^1[0,1]$ zhadnogo algoritma po obschei sisteme Khaara”, Izv. NAN Armenii. Matem., 47:6 (2012), 53–70 | MR | Zbl
[25] A. Kh. Kobelyan, “Some property of Fourier–Haar coefficients”, Adv. Theor. Appl. Math., 7:4 (2012), 433–438
[26] A. Kh. Kobelyan, “On a property of general Haar system”, Proc. Yerevan State Univ., Phys. Math. Sci., 3 (2013), 23–28 | Zbl
[27] L. N. Galoyan, “Summation of Fourier trigonometric series and conjugate series by the $(C,\alpha,\beta)$ method”, J. Contemp. Math. Anal., 46:5 (2011), 252–263 | DOI | MR | Zbl
[28] L. N. Galoyan, “On convergence of negative order Cesàro means of the Fourier–Walsh series in $L_{p}$, $p>1$, metrics”, J. Contemp. Math. Anal., 47:3 (2012), 134–147 | DOI | MR | Zbl
[29] L. N. Galoyan, “On convergence in $L_{1}[0,1]$ norm of some irregular linear means of Walsh–Fourier series”, Proc. Yerevan State Univ., Phys. Math. Sci., 2012, no. 1, 10–15 | Zbl
[30] N. K. Bary, A treatise on trigonometric series, v. I, II, The Macmillan Co., New York, 1964, xxiii+553 pp., xix+508 pp. | MR | MR | Zbl
[31] D. E. Men'shov, “Application of Cesàro summability methods of negative order to trigonometric Fourier series of summable and square summable functions”, Math. USSR-Sb., 22:4 (1974), 497–515 | DOI | MR | Zbl
[32] A. Zygmund, Trigonometric series, v. I, 2nd ed., Cambridge Univ. Press, New York, 1959, xii+383 pp. | MR | MR | Zbl | Zbl
[33] A. M. Olevskii, “Existence of functions with nonremovable Carleman singularities”, Soviet Math. Dokl., 238:4 (1978), 102–106 | MR | Zbl
[34] G. H. Hardy, Divergent series, Oxford, Clarendon Press, 1949, xvi+396 pp. | MR | MR | Zbl
[35] M. I. D'yachenko, “The Hardy–Littlewood theorem for trigonometric series with generalized monotone coefficients”, Russian Math. (Iz. VUZ), 52:5 (2008), 32–40 | DOI | MR | Zbl
[36] Z. Ciesielski, “Properties of the orthonormal Franklin system”, Studia Math., 23 (1963), 141–157 | MR | Zbl
[37] Z. Ciesielski, “Properties of the orthonormal Franklin system. II”, Studia Math., 27 (1966), 289–323 | MR | Zbl
[38] Z. Ciesielski, “Constructive function theory and spline systems”, Studia Math., 53 (1975), 277–302 | MR | Zbl
[39] B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | MR | MR | Zbl | Zbl
[40] S. Karlin, “Bases in Banach spaces”, Duke Math. J., 15:4 (1948), 971–985 | DOI | MR | Zbl
[41] G. G. Gevorkyan, “Unboundedness of the shift operator with respect to the Franklin system in the space $L_1$”, Math. Notes, 38:4 (1985), 796–802 | DOI | MR | Zbl
[42] A. Haar, “Zur Theorie der orthogonalen Funktionensysteme”, Math. Ann., 69:3 (1910), 331–371 | DOI | MR | Zbl
[43] J. Schauder, “Eine Eigenschaft des Haarschen Orthogonalsystems”, Math. Z., 28:1 (1928), 317–320 | DOI | MR | Zbl
[44] J. Marcinkiewicz, Collected papers, Państwowe Wydawnictwo Naukowe, Warsaw, 1964, viii+673 pp. | MR | Zbl
[45] F. G. Arutyunyan, “O ryadakh po sisteme Khaara”, Dokl. AN Arm. SSR, 42:3 (1966), 134–140 | MR | Zbl
[46] M. G. Grigoryan, “On the unconditional representation of functions in $\mathrm{Lp}$ by Haar series”, International conference on Fourier analysis and approximation theory (Bazaleti, Georgia, 2013), 2013, 20–21
[47] P. L. Ulyanov, “O ryadakh po sisteme Khaara”, Matem. sb., 63(105):3 (1964), 356–391 | MR | Zbl