Convergence of Fourier series in classical systems
Sbornik. Mathematics, Tome 206 (2015) no. 7, pp. 941-979 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The following results are proved: there exists an integrable function such that any subsequence of the Cesàro means of negative order of the Fourier series of this function diverges almost everywhere; the values of an arbitrary integrable function can be changed on a set (independent of this function) of arbitrarily small measure so that the Fourier series with respect to both the Franklin system and the Haar system of the ‘modified’ function will be absolutely convergent almost everywhere on $[0,1]$; there exists a continuous function which features an unremovable absolute divergence. Bibliography: 47 titles.
Keywords: Fourier series, classical systems, almost everywhere convergence, convergence in the norm, absolute convergence.
Mots-clés : Cesàro means
@article{SM_2015_206_7_a2,
     author = {L. N. Galoyan and M. G. Grigoryan and A. Kh. Kobelyan},
     title = {Convergence of {Fourier} series in classical systems},
     journal = {Sbornik. Mathematics},
     pages = {941--979},
     year = {2015},
     volume = {206},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_7_a2/}
}
TY  - JOUR
AU  - L. N. Galoyan
AU  - M. G. Grigoryan
AU  - A. Kh. Kobelyan
TI  - Convergence of Fourier series in classical systems
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 941
EP  - 979
VL  - 206
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_7_a2/
LA  - en
ID  - SM_2015_206_7_a2
ER  - 
%0 Journal Article
%A L. N. Galoyan
%A M. G. Grigoryan
%A A. Kh. Kobelyan
%T Convergence of Fourier series in classical systems
%J Sbornik. Mathematics
%D 2015
%P 941-979
%V 206
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2015_206_7_a2/
%G en
%F SM_2015_206_7_a2
L. N. Galoyan; M. G. Grigoryan; A. Kh. Kobelyan. Convergence of Fourier series in classical systems. Sbornik. Mathematics, Tome 206 (2015) no. 7, pp. 941-979. http://geodesic.mathdoc.fr/item/SM_2015_206_7_a2/

[1] N. N. Luzin', “K' osnovnoi teoremѣ integralnago ischisleniya”, Matem. sb., 28:2 (1912), 266–294 | Zbl

[2] D. Menchoff, “Sur la convergence uniforme des séries de Fourier”, Matem. sb., 11(53):1–2 (1942), 67–96 | MR | Zbl

[3] M. G. Grigorian, “On the convergence of Fourier series in the metric of $L^{1}$”, Anal. Math., 17:3 (1991), 211–237 | DOI | MR | Zbl

[4] D. E. Men'shov, “Properties of Cesàro means of negative order and of certain other $T$-means for Fourier series of continuous functions”, Math. USSR-Sb., 15:3 (1971), 415–441 | DOI | MR | Zbl

[5] B. S. Kashin, G. G. Kosheleva, “An approach to “correction” theorems”, Moscow Univ. Math. Bull., 43:4 (1988), 1–5 | MR | Zbl

[6] M. G. Grigoryan, T. M. Grigoryan, “On the absolute convergece Schauder series”, Adv. Theor. Appl. Math., 9:1 (2014), 11–14

[7] D. E. Men'shov, “Properties of Cesàro means of negative order for Fourier series of summable functions”, Proc. Steklov Inst. Math., 134 (1977), 229–245 | MR | Zbl

[8] G. G. Gevorkyan, “O predstavlenii izmerimykh funktsii absolyutno skhodyaschimisya ryadami po sisteme Franklina”, Dokl. AN Arm.SSR, 83:1 (1986), 15–18 | MR | Zbl

[9] L. D. Gogoladze, T. Sh. Zerekidze, “O sopryazhennykh funktsiyakh neskolkikh peremennykh”, Soobsch. AN Gruz. SSR, 94:3 (1979), 541–544 | MR | Zbl

[10] K. I. Oskolkov, “Uniform modulus of continuity of summable functions on sets of positive measure”, Soviet Math. Dokl., 17 (1976), 1028–1031 | MR | Zbl

[11] Sh. V. Kheladze, “Convergence of Fourier series almost everywhere and in the $L$-metric”, Math. USSR-Sb., 35 (1979), 527–534 pp. | DOI | MR | Zbl

[12] S. V. Kislyakov, “Kolichestvennyi aspekt teorem ob ispravlenii”, Issledovaniya po lineinym operatoram i teorii funktsii. IX, Zap. nauchn. sem. LOMI, 92, Izd-vo «Nauka», Leningrad. otd., L., 1979, 182–191 | MR | Zbl

[13] M. G. Grigorian, “On convergence of Fourier series in complete orthonormal systems in the $L^{1}$ metric and almost everywhere”, Math. USSR-Sb., 70:2 (1991), 445–466 | DOI | MR | Zbl

[14] S. A. Episkoposian, M. G. Grigorian, “$L^{p}$-convergence of greedy algorithm by generalized Walsh system”, J. Math. Anal. Appl., 389:2 (2012), 1374–1379 | DOI | MR | Zbl

[15] M. G. Grigoryan, S. L. Gogyan, “Nelineinaya approksimatsiya po sisteme Khaara i modifikatsii funktsii”, Anal. Math., 32:1 (2006), 49–80 | DOI | MR | Zbl

[16] M. G. Grigorian, K. S. Kazarian, F. Soria, “Mean convergence of orthonormal Fourier series of modified functions”, Trans. Amer. Math. Soc., 352:8 (2000), 3777–3798 | DOI | MR | Zbl

[17] M. G. Grigoryan, “On the $L^p_\mu$-strong property of orthonormal systems”, Sb. Math., 194:10 (2003), 1503–1532 | DOI | DOI | MR | Zbl

[18] M. Grigoryan, “Uniform convergence of the greedy algorithm with respect to the Walsh system”, Studia. Math., 198:2 (2010), 197–206 | DOI | MR | Zbl

[19] M. G. Grigoryan, “Modifications of functions, Fourier coefficients and nonlinear approximation”, Sb. Math., 203:3 (2012), 351–379 | DOI | DOI | MR | Zbl

[20] M. G. Grigoryan, A. A. Sargsyan, “Non-linear approximation of continuous functions by the Faber–Schauder system”, Sb. Math., 199:5 (2008), 629–653 | DOI | DOI | MR | Zbl

[21] M. G. Grigorian, R. E. Zink, “Greedy approximation with respect to certain subsystems of the Walsh orthonormal system”, Proc. Amer. Math. Soc., 134:12 (2006), 3495–3505 | DOI | MR | Zbl

[22] A. Kh. Kobelyan, “On the Fourier–Haar coefficients of functions from $L_p$”, International conference “Harmonic analysis and approximations, IV” (Tsaghkadzor, Armenia), 2008, 73–74

[23] M. Grigoryan, A. Kobelyan, “On the convergence of hard sampling operators”, Second International conference “Mathematics in Armenia: advances and perspectives” (Tsaghkadzor, Armenia, 2013), 2013, 45–46

[24] A. Kh. Kobelyan, “O skhodimosti v $L^1[0,1]$ zhadnogo algoritma po obschei sisteme Khaara”, Izv. NAN Armenii. Matem., 47:6 (2012), 53–70 | MR | Zbl

[25] A. Kh. Kobelyan, “Some property of Fourier–Haar coefficients”, Adv. Theor. Appl. Math., 7:4 (2012), 433–438

[26] A. Kh. Kobelyan, “On a property of general Haar system”, Proc. Yerevan State Univ., Phys. Math. Sci., 3 (2013), 23–28 | Zbl

[27] L. N. Galoyan, “Summation of Fourier trigonometric series and conjugate series by the $(C,\alpha,\beta)$ method”, J. Contemp. Math. Anal., 46:5 (2011), 252–263 | DOI | MR | Zbl

[28] L. N. Galoyan, “On convergence of negative order Cesàro means of the Fourier–Walsh series in $L_{p}$, $p>1$, metrics”, J. Contemp. Math. Anal., 47:3 (2012), 134–147 | DOI | MR | Zbl

[29] L. N. Galoyan, “On convergence in $L_{1}[0,1]$ norm of some irregular linear means of Walsh–Fourier series”, Proc. Yerevan State Univ., Phys. Math. Sci., 2012, no. 1, 10–15 | Zbl

[30] N. K. Bary, A treatise on trigonometric series, v. I, II, The Macmillan Co., New York, 1964, xxiii+553 pp., xix+508 pp. | MR | MR | Zbl

[31] D. E. Men'shov, “Application of Cesàro summability methods of negative order to trigonometric Fourier series of summable and square summable functions”, Math. USSR-Sb., 22:4 (1974), 497–515 | DOI | MR | Zbl

[32] A. Zygmund, Trigonometric series, v. I, 2nd ed., Cambridge Univ. Press, New York, 1959, xii+383 pp. | MR | MR | Zbl | Zbl

[33] A. M. Olevskii, “Existence of functions with nonremovable Carleman singularities”, Soviet Math. Dokl., 238:4 (1978), 102–106 | MR | Zbl

[34] G. H. Hardy, Divergent series, Oxford, Clarendon Press, 1949, xvi+396 pp. | MR | MR | Zbl

[35] M. I. D'yachenko, “The Hardy–Littlewood theorem for trigonometric series with generalized monotone coefficients”, Russian Math. (Iz. VUZ), 52:5 (2008), 32–40 | DOI | MR | Zbl

[36] Z. Ciesielski, “Properties of the orthonormal Franklin system”, Studia Math., 23 (1963), 141–157 | MR | Zbl

[37] Z. Ciesielski, “Properties of the orthonormal Franklin system. II”, Studia Math., 27 (1966), 289–323 | MR | Zbl

[38] Z. Ciesielski, “Constructive function theory and spline systems”, Studia Math., 53 (1975), 277–302 | MR | Zbl

[39] B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | MR | MR | Zbl | Zbl

[40] S. Karlin, “Bases in Banach spaces”, Duke Math. J., 15:4 (1948), 971–985 | DOI | MR | Zbl

[41] G. G. Gevorkyan, “Unboundedness of the shift operator with respect to the Franklin system in the space $L_1$”, Math. Notes, 38:4 (1985), 796–802 | DOI | MR | Zbl

[42] A. Haar, “Zur Theorie der orthogonalen Funktionensysteme”, Math. Ann., 69:3 (1910), 331–371 | DOI | MR | Zbl

[43] J. Schauder, “Eine Eigenschaft des Haarschen Orthogonalsystems”, Math. Z., 28:1 (1928), 317–320 | DOI | MR | Zbl

[44] J. Marcinkiewicz, Collected papers, Państwowe Wydawnictwo Naukowe, Warsaw, 1964, viii+673 pp. | MR | Zbl

[45] F. G. Arutyunyan, “O ryadakh po sisteme Khaara”, Dokl. AN Arm. SSR, 42:3 (1966), 134–140 | MR | Zbl

[46] M. G. Grigoryan, “On the unconditional representation of functions in $\mathrm{Lp}$ by Haar series”, International conference on Fourier analysis and approximation theory (Bazaleti, Georgia, 2013), 2013, 20–21

[47] P. L. Ulyanov, “O ryadakh po sisteme Khaara”, Matem. sb., 63(105):3 (1964), 356–391 | MR | Zbl