Compact noncontraction semigroups of affine operators
Sbornik. Mathematics, Tome 206 (2015) no. 7, pp. 921-940 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We analyze compact multiplicative semigroups of affine operators acting in a finite-dimensional space. The main result states that every such semigroup is either contracting, that is, contains elements of arbitrarily small operator norm, or all its operators share a common invariant affine subspace on which this semigroup is contracting. The proof uses functional difference equations with contraction of the argument. We look at applications to self-affine partitions of convex sets, the investigation of finite affine semigroups and the proof of a criterion of primitivity for nonnegative matrix families. Bibliography: 32 titles.
Keywords: affine operator, self-similarity, spectral radius
Mots-clés : partition, primitive matrix.
@article{SM_2015_206_7_a1,
     author = {A. S. Voynov and V. Yu. Protasov},
     title = {Compact noncontraction semigroups of affine operators},
     journal = {Sbornik. Mathematics},
     pages = {921--940},
     year = {2015},
     volume = {206},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_7_a1/}
}
TY  - JOUR
AU  - A. S. Voynov
AU  - V. Yu. Protasov
TI  - Compact noncontraction semigroups of affine operators
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 921
EP  - 940
VL  - 206
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_7_a1/
LA  - en
ID  - SM_2015_206_7_a1
ER  - 
%0 Journal Article
%A A. S. Voynov
%A V. Yu. Protasov
%T Compact noncontraction semigroups of affine operators
%J Sbornik. Mathematics
%D 2015
%P 921-940
%V 206
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2015_206_7_a1/
%G en
%F SM_2015_206_7_a1
A. S. Voynov; V. Yu. Protasov. Compact noncontraction semigroups of affine operators. Sbornik. Mathematics, Tome 206 (2015) no. 7, pp. 921-940. http://geodesic.mathdoc.fr/item/SM_2015_206_7_a1/

[1] J. L. Mott, H. Schneider, “Matrix algebras and groups relatively bounded in norm”, Arch. Math., 10:1 (1959), 1–6 | DOI | MR | Zbl

[2] W. E. Longstaff, H. Radjavi, “On permutability and submultiplicativity of spectral radius”, Canad. J. Math., 47:5 (1995), 1007–1022 | DOI | MR | Zbl

[3] M. Omladič, H. Radjavi, “Irreducible semigroups with multiplicative spectral radius”, Linear Algebra Appl., 251 (1997), 59–72 | DOI | MR | Zbl

[4] A. I. Popov, “On matrix semigroups bounded above and below”, Linear Algebra Appl., 438:11 (2013), 4439–4447 | DOI | MR | Zbl

[5] V. Yu. Protasov, A. S. Voynov, “Matrix semigroups with constant spectral radius”, Proc. London Math. Soc. (3), 2015 (submitted to)

[6] J. C. Lagarias, Yang Wang, “Self-affine tiles in $\mathbb R^n$”, Adv. Math., 121:1 (1996), 21–49 | DOI | MR | Zbl

[7] Ding-Xuan Zhou, “Self-similar lattice tilings and subdivision schemes”, SIAM J. Math. Anal., 33:1 (2001), 1–15 (electronic) | DOI | MR | Zbl

[8] C. A. Micchelli, H. Prautzsch, “Uniform refinement of curves”, Linear Algebra Appl., 114/115 (1989), 841–870 | DOI | MR | Zbl

[9] A. S. Cavaretta, W. Dahmen, Ch. A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc., 93, no. 453, Amer. Math. Soc., Providence, RI, 1991, vi+186 pp. | DOI | MR | Zbl

[10] I. Daubechies, J. C. Lagarias, “Two-scale difference equations. II. Local regularity, infinite products of matrices and fractals”, SIAM J. Math. Anal., 23:4 (1992), 1031–1079 | DOI | MR | Zbl

[11] C. A. Cabrelli, Ch. Heil, U. M. Molter, Self-similarity and multiwavelets in higher dimensions, Mem. Amer. Math. Soc., 170, no. 807, Amer. Math. Soc., Providence, RI, 2004, viii+82 pp. | DOI | MR | Zbl

[12] V. Yu. Protasov, “Fractal curves and wavelets”, Izv. Math., 70:5 (2006), 975–1013 | DOI | DOI | MR | Zbl

[13] V. Yu. Protasov, “Extremal $L_p$-norms of linear operators and self-similar functions”, Linear Algebra Appl., 428:10 (2008), 2339–2356 | DOI | MR | Zbl

[14] A. S. Voynov, “Self-affine polytopes. Applications to functional equations and matrix theory”, Sb. Math., 202:10 (2011), 1413–1439 | DOI | DOI | MR | Zbl

[15] G. Jacob, “Un algorithme calculant le cardinal, fini ou infini, des demi-groupes de matrices”, Theoret. Comput. Sci., 5:2 (1977/78), 183–204 | DOI | MR | Zbl

[16] A. Mandel, I. Simon, “On finite semigroups of matrices”, Theoret. Comput. Sci., 5:2 (1977/78), 101–111 | DOI | MR | Zbl

[17] R. M. Jungers, V. Protasov, V. D. Blondel, “Efficient algorithms for deciding the type of growth of products of integer matrices”, Linear Algebra Appl., 428:10 (2008), 2296–2311 | DOI | MR | Zbl

[18] E. Hertel, C. Richter, “Self-affine convex polygons”, J. Geom., 98:1-2 (2010), 79–89 | DOI | MR | Zbl

[19] C. Richter, “Self-affine convex discs are polygons”, Beitr. Algebra Geom., 53:1 (2012), 219–224 | DOI | MR | Zbl

[20] A. S. Voynov, “On the structure of self-affine convex bodies”, Sb. Math., 204:8 (2013), 1122–1130 | DOI | DOI | MR | Zbl

[21] V. Yu. Protasov, A. S. Voynov, “Sets of nonnegative matrices without positive products”, Linear Algebra Appl., 437:3 (2012), 749–765 | DOI | MR | Zbl

[22] M. A. Berger, Yang Wang, “Bounded semigroups of matrices”, Linear Algebra Appl., 166 (1992), 21–27 | DOI | MR | Zbl

[23] V. L. Zaguskin, “Ob opisannykh i vpisannykh ellipsoidakh ekstremalnogo ob'ema”, UMN, 13:6(84) (1958), 89–93 | MR | Zbl

[24] H. T. Croft, K. J. Falconer, R. K. Guy, Unsolved problems in geometry, Problem Books in Math., Unsolved problems in intuitive mathematics, II, Springer-Verlag, New York, 1991, xvi+198 pp. | DOI | MR | Zbl

[25] J. Wolfowitz, “Products of indecomposable, aperiodic, stochastic matrices”, Proc. Amer. Math. Soc., 14:5 (1963), 733–737 | DOI | MR | Zbl

[26] E. Seneta, Non-negative matrices. An introduction to theory and applications, Halsted Press [A division of John Wiley Sons], New York, 1973, x+214 pp. | MR | Zbl

[27] D. J. Hartfiel, Nonhomogeneous matrix products, World Sci. Publ., River Edge, NJ, 2002, x+224 pp. | MR | Zbl

[28] H. Schneider, “The concepts of irreducibility and full indecomposability of a matrix in the works of Frobenius, König and Markov”, Linear Algebra Appl., 18:2 (1977), 139–162 | DOI | MR | Zbl

[29] J. C. Watkins, “Limit theorems for products of random matrices: a comparison of two points of view”, Random matrices and their applications (Brunswick, Maine, 1984), Contemp. Math., 50, Amer. Math. Soc., Providence, RI, 1986, 5–22 | DOI | MR | Zbl

[30] E. S. Key, “Lower bounds for the maximal Lyapunov exponent”, J. Theoret. Probab., 3:3 (1990), 477–488 | DOI | MR | Zbl

[31] Yu. A. Al'pin, V. S. Al'pina, “Combinatorial properties of irreducible semigroups of nonnegative matrices”, J. Math. Sci. (N. Y.), 191:1 (2013), 4–9 | DOI | MR | Zbl

[32] V. D. Blondel, R. M. Jungers, A. Olshevsky, “On primitivity of sets of matrices”, arXiv: 1306.0729