Compact noncontraction semigroups of affine operators
Sbornik. Mathematics, Tome 206 (2015) no. 7, pp. 921-940

Voir la notice de l'article provenant de la source Math-Net.Ru

We analyze compact multiplicative semigroups of affine operators acting in a finite-dimensional space. The main result states that every such semigroup is either contracting, that is, contains elements of arbitrarily small operator norm, or all its operators share a common invariant affine subspace on which this semigroup is contracting. The proof uses functional difference equations with contraction of the argument. We look at applications to self-affine partitions of convex sets, the investigation of finite affine semigroups and the proof of a criterion of primitivity for nonnegative matrix families. Bibliography: 32 titles.
Keywords: affine operator, self-similarity, spectral radius
Mots-clés : partition, primitive matrix.
@article{SM_2015_206_7_a1,
     author = {A. S. Voynov and V. Yu. Protasov},
     title = {Compact noncontraction semigroups of affine operators},
     journal = {Sbornik. Mathematics},
     pages = {921--940},
     publisher = {mathdoc},
     volume = {206},
     number = {7},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_7_a1/}
}
TY  - JOUR
AU  - A. S. Voynov
AU  - V. Yu. Protasov
TI  - Compact noncontraction semigroups of affine operators
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 921
EP  - 940
VL  - 206
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_7_a1/
LA  - en
ID  - SM_2015_206_7_a1
ER  - 
%0 Journal Article
%A A. S. Voynov
%A V. Yu. Protasov
%T Compact noncontraction semigroups of affine operators
%J Sbornik. Mathematics
%D 2015
%P 921-940
%V 206
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2015_206_7_a1/
%G en
%F SM_2015_206_7_a1
A. S. Voynov; V. Yu. Protasov. Compact noncontraction semigroups of affine operators. Sbornik. Mathematics, Tome 206 (2015) no. 7, pp. 921-940. http://geodesic.mathdoc.fr/item/SM_2015_206_7_a1/