@article{SM_2015_206_7_a0,
author = {Yu. V. Averboukh},
title = {A minimax approach to mean field games},
journal = {Sbornik. Mathematics},
pages = {893--920},
year = {2015},
volume = {206},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_7_a0/}
}
Yu. V. Averboukh. A minimax approach to mean field games. Sbornik. Mathematics, Tome 206 (2015) no. 7, pp. 893-920. http://geodesic.mathdoc.fr/item/SM_2015_206_7_a0/
[1] J.-M. Lasry, P.-L. Lions, “Jeux à champ moyen. I. Le cas stationnaire”, C. R. Math. Acad. Sci. Paris, 343:9 (2006), 619–625 | DOI | MR | Zbl
[2] J.-M. Lasry, P.-L. Lions, “Jeux à champ moyen. II. Horizon fini et contrôle optimal”, C. R. Math. Acad. Sci. Paris, 343:10 (2006), 679–684 | DOI | MR | Zbl
[3] J.-M. Lasry, P.-L. Lions, “Mean field games”, Jpn. J. Math., 2:1 (2007), 229–260 | DOI | MR | Zbl
[4] P.-L. Lions, Théorie des jeux de champ moyen et applications, Cours au Collége de France, 2010 {www.college-de-france.fr/site/pierre-louis-lions/course-2009-2010.htm}
[5] O. Guéant, J.-M. Lasry, P.-L. Lions, “Mean field games and applications”, Paris–Princeton lectures on mathematical finance 2010, Lecture Notes in Math., 2003, Springer, Berlin, 2011, 205–266 | DOI | MR | Zbl
[6] M. Huang, P. E. Caines, R. P. Malhamé, “Individual and mass behaviour in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions”, Proceedings of the 42nd IEEE conference on decision and control, 2003 (Maui, Hawaii USA, December 2003), v. 1, IEEE, 2003, 98–103 | DOI
[7] M. Huang, R. P. Malhamé, P. E. Caines, “Nash equilibria for large-population linear stochastic systems of weakly coupled agents”, Analysis, control and optimization of complex dynamic systems, GERAD 25th Anniv. Ser., 4, Springer, New York, 2005, 215–252 | DOI | MR | Zbl
[8] M. Huang, R. P. Malhamé, P. E. Caines, “Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle”, Commun. Inf. Syst., 6:3 (2006), 221–252 | DOI | MR | Zbl
[9] M. Huang, P. E. Caines, R. P. Malhamé, “Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized $\varepsilon$-Nash equilibria”, IEEE Trans. Automat. Contol, 52:9 (2007), 1560–1571 | DOI | MR
[10] M. Huang, P. E. Caines, R. P. Malhamé, “The NCE (mean field) principle with locality dependent cost interactions”, IEEE Trans. Automat. Control, 55:12 (2010), 2799–2805 | DOI | MR
[11] D. A. Gomes, J. Saúde, “Mean field games models – a brief survey”, Dyn. Games Appl., 4:2 (2014), 110-154 | DOI | MR | Zbl
[12] V. N. Kolokoltsov, Jiajie Li, Wei Yang, Mean field games and nonlinear Markov processes, 2011, arXiv: 1112.3744
[13] V. N. Kolokoltsov, Wei Yang, Sensitivity analysis for HJB equations with an application to a coupled backward–forward system, 2013, arXiv: 1303.6234
[14] F. Bagagiolo, D. Bauso, “Mean-field games and dynamic demand management in power grids”, Dyn. Games Appl., 4:2 (2014), 155–176 | DOI | MR | Zbl
[15] P. Cardaliaguet, Weak solutions for first order mean field games with local coupling, 2013, arXiv: 1305.7015
[16] P. Cardaliaguet, Notes on mean field games, from P.-L. Lions' lectures at Collège de France, 2012, 59 pp. https://www.ceremade.dauphine.fr/~cardalia/MFG100629.pdf
[17] D. A. Gomes, V. K. Voskanyan, Extended mean-field games – formulation, existence, uniqueness and examples, 2013, arXiv: 1305.2600v1
[18] A. I. Subbotin, Obobschennye resheniya differentsialnykh uravnenii 1-go poryadka. Perspektivy dinamicheskoi optimizatsii, RKhD, Izhevsk, 2003, 336 pp.
[19] N. N. Krasovskii, A. I. Subbotin, Game-theoretical control problems, Springer Ser. Soviet Math., Springer-Verlag, New York, 1988, xii+517 pp. | MR | MR | Zbl | Zbl
[20] A. F. Kleimenov, Neantagonisticheskie pozitsionnye differentsialnye igry, Nauka, Ekaterinburg, 1993, 185 pp. | MR | Zbl
[21] T. Başar, G. J. Olsder, Dynamic noncooperative game theory, Classics Appl. Math., 23, Reprint of the 2nd ed., Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999, xvi+519 pp. | MR | Zbl
[22] C. Villani, Optimal transport. Old and new, Grundlehren Math. Wiss., 338, Springer-Verlag, Berlin, 2009, xxii+973 pp. | DOI | MR | Zbl
[23] J.-P. Aubin, Viability theory, Systems Control Found. Appl., Birkhaüser Boston, Inc., Boston, MA, 1991, xxvi+543 pp. | MR | Zbl
[24] V. I. Bogachev, Measure theory, v. I, II, Springer-Verlag, Berlin, 2007, xviii+500 pp., xiv+575 pp. | DOI | MR | Zbl
[25] R. J. Aumann, “Markets with a continuum of traders”, Econometrica, 32:1-2 (1964), 39–50 | DOI | MR | Zbl
[26] R. J. Aumann, “Existence of competitive equilibria in markets with a continuum of traders”, Econometrica, 34:1 (1966), 1–17 | DOI | MR | Zbl
[27] K. Vind, “Edgeworth-allocations is an exchange economy with many traders”, Internat. Econom. Rev., 5:2 (1964), 165–177 | DOI | Zbl
[28] M. Ali Khan, Yeneng Sun, “Non-cooperative games with many players”, Handbook of game theory with economic applications, v. 3, Elsevier, Amsterdam, 2002, 1761–1808 | DOI
[29] L. A. Petrosyan, V. Ulanov, “Dinamicheskie igry s beskonechnym chislom uchastnikov. Osnovnye postroeniya”, Vestn. Leningrad. yn-ta. Ser. 1 Matem. Mekh. Astron., 1982, no. 7, 69–75 | MR | Zbl
[30] A. G. Chentsov, “On a game problem of converging at a given instant of time”, Math. USSR-Sb., 28:3 (1976), 353–376 | DOI | MR | Zbl
[31] A. I. Subbotin, A. G. Chentsov, Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR | Zbl
[32] J. Warga, Optimal control of differential and functional equations, Academic Press, New York–London, 1972, xiii+531 pp. | MR | MR | Zbl
[33] R. V. Gamkrelidze, Principles of optimal control theory, Math. Concepts Methods Sci. Engrg., 7, Rev. ed., Plenum Press, New York–London, 1978, xii+175 pp. | MR | MR | Zbl
[34] C. D. Aliprantis, K. C. Border, Infinite dimensional analysis. A hitchhiker's guide, 3rd ed., Springer, Berlin, 2006 | MR | Zbl