A minimax approach to mean field games
Sbornik. Mathematics, Tome 206 (2015) no. 7, pp. 893-920 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An initial boundary value problem for the system of equations of a determined mean field game is considered. The proposed definition of a generalized solution is based on the minimax approach to the Hamilton-Jacobi equation. We prove the existence of the generalized (minimax) solution using the Nash equilibrium in the auxiliary differential game with infinitely many identical players. We show that the minimax solution of the original system provides the $\varepsilon$-Nash equilibrium in the differential game with a finite number of players. Bibliography: 34 titles.
Keywords: mean-field-games, Hamilton-Jacobi equations, minimax solution, Nash equilibrium, differential game with infinitely many players.
@article{SM_2015_206_7_a0,
     author = {Yu. V. Averboukh},
     title = {A minimax approach to mean field games},
     journal = {Sbornik. Mathematics},
     pages = {893--920},
     year = {2015},
     volume = {206},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_7_a0/}
}
TY  - JOUR
AU  - Yu. V. Averboukh
TI  - A minimax approach to mean field games
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 893
EP  - 920
VL  - 206
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_7_a0/
LA  - en
ID  - SM_2015_206_7_a0
ER  - 
%0 Journal Article
%A Yu. V. Averboukh
%T A minimax approach to mean field games
%J Sbornik. Mathematics
%D 2015
%P 893-920
%V 206
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2015_206_7_a0/
%G en
%F SM_2015_206_7_a0
Yu. V. Averboukh. A minimax approach to mean field games. Sbornik. Mathematics, Tome 206 (2015) no. 7, pp. 893-920. http://geodesic.mathdoc.fr/item/SM_2015_206_7_a0/

[1] J.-M. Lasry, P.-L. Lions, “Jeux à champ moyen. I. Le cas stationnaire”, C. R. Math. Acad. Sci. Paris, 343:9 (2006), 619–625 | DOI | MR | Zbl

[2] J.-M. Lasry, P.-L. Lions, “Jeux à champ moyen. II. Horizon fini et contrôle optimal”, C. R. Math. Acad. Sci. Paris, 343:10 (2006), 679–684 | DOI | MR | Zbl

[3] J.-M. Lasry, P.-L. Lions, “Mean field games”, Jpn. J. Math., 2:1 (2007), 229–260 | DOI | MR | Zbl

[4] P.-L. Lions, Théorie des jeux de champ moyen et applications, Cours au Collége de France, 2010 {www.college-de-france.fr/site/pierre-louis-lions/course-2009-2010.htm}

[5] O. Guéant, J.-M. Lasry, P.-L. Lions, “Mean field games and applications”, Paris–Princeton lectures on mathematical finance 2010, Lecture Notes in Math., 2003, Springer, Berlin, 2011, 205–266 | DOI | MR | Zbl

[6] M. Huang, P. E. Caines, R. P. Malhamé, “Individual and mass behaviour in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions”, Proceedings of the 42nd IEEE conference on decision and control, 2003 (Maui, Hawaii USA, December 2003), v. 1, IEEE, 2003, 98–103 | DOI

[7] M. Huang, R. P. Malhamé, P. E. Caines, “Nash equilibria for large-population linear stochastic systems of weakly coupled agents”, Analysis, control and optimization of complex dynamic systems, GERAD 25th Anniv. Ser., 4, Springer, New York, 2005, 215–252 | DOI | MR | Zbl

[8] M. Huang, R. P. Malhamé, P. E. Caines, “Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle”, Commun. Inf. Syst., 6:3 (2006), 221–252 | DOI | MR | Zbl

[9] M. Huang, P. E. Caines, R. P. Malhamé, “Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized $\varepsilon$-Nash equilibria”, IEEE Trans. Automat. Contol, 52:9 (2007), 1560–1571 | DOI | MR

[10] M. Huang, P. E. Caines, R. P. Malhamé, “The NCE (mean field) principle with locality dependent cost interactions”, IEEE Trans. Automat. Control, 55:12 (2010), 2799–2805 | DOI | MR

[11] D. A. Gomes, J. Saúde, “Mean field games models – a brief survey”, Dyn. Games Appl., 4:2 (2014), 110-154 | DOI | MR | Zbl

[12] V. N. Kolokoltsov, Jiajie Li, Wei Yang, Mean field games and nonlinear Markov processes, 2011, arXiv: 1112.3744

[13] V. N. Kolokoltsov, Wei Yang, Sensitivity analysis for HJB equations with an application to a coupled backward–forward system, 2013, arXiv: 1303.6234

[14] F. Bagagiolo, D. Bauso, “Mean-field games and dynamic demand management in power grids”, Dyn. Games Appl., 4:2 (2014), 155–176 | DOI | MR | Zbl

[15] P. Cardaliaguet, Weak solutions for first order mean field games with local coupling, 2013, arXiv: 1305.7015

[16] P. Cardaliaguet, Notes on mean field games, from P.-L. Lions' lectures at Collège de France, 2012, 59 pp. https://www.ceremade.dauphine.fr/~cardalia/MFG100629.pdf

[17] D. A. Gomes, V. K. Voskanyan, Extended mean-field games – formulation, existence, uniqueness and examples, 2013, arXiv: 1305.2600v1

[18] A. I. Subbotin, Obobschennye resheniya differentsialnykh uravnenii 1-go poryadka. Perspektivy dinamicheskoi optimizatsii, RKhD, Izhevsk, 2003, 336 pp.

[19] N. N. Krasovskii, A. I. Subbotin, Game-theoretical control problems, Springer Ser. Soviet Math., Springer-Verlag, New York, 1988, xii+517 pp. | MR | MR | Zbl | Zbl

[20] A. F. Kleimenov, Neantagonisticheskie pozitsionnye differentsialnye igry, Nauka, Ekaterinburg, 1993, 185 pp. | MR | Zbl

[21] T. Başar, G. J. Olsder, Dynamic noncooperative game theory, Classics Appl. Math., 23, Reprint of the 2nd ed., Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999, xvi+519 pp. | MR | Zbl

[22] C. Villani, Optimal transport. Old and new, Grundlehren Math. Wiss., 338, Springer-Verlag, Berlin, 2009, xxii+973 pp. | DOI | MR | Zbl

[23] J.-P. Aubin, Viability theory, Systems Control Found. Appl., Birkhaüser Boston, Inc., Boston, MA, 1991, xxvi+543 pp. | MR | Zbl

[24] V. I. Bogachev, Measure theory, v. I, II, Springer-Verlag, Berlin, 2007, xviii+500 pp., xiv+575 pp. | DOI | MR | Zbl

[25] R. J. Aumann, “Markets with a continuum of traders”, Econometrica, 32:1-2 (1964), 39–50 | DOI | MR | Zbl

[26] R. J. Aumann, “Existence of competitive equilibria in markets with a continuum of traders”, Econometrica, 34:1 (1966), 1–17 | DOI | MR | Zbl

[27] K. Vind, “Edgeworth-allocations is an exchange economy with many traders”, Internat. Econom. Rev., 5:2 (1964), 165–177 | DOI | Zbl

[28] M. Ali Khan, Yeneng Sun, “Non-cooperative games with many players”, Handbook of game theory with economic applications, v. 3, Elsevier, Amsterdam, 2002, 1761–1808 | DOI

[29] L. A. Petrosyan, V. Ulanov, “Dinamicheskie igry s beskonechnym chislom uchastnikov. Osnovnye postroeniya”, Vestn. Leningrad. yn-ta. Ser. 1 Matem. Mekh. Astron., 1982, no. 7, 69–75 | MR | Zbl

[30] A. G. Chentsov, “On a game problem of converging at a given instant of time”, Math. USSR-Sb., 28:3 (1976), 353–376 | DOI | MR | Zbl

[31] A. I. Subbotin, A. G. Chentsov, Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR | Zbl

[32] J. Warga, Optimal control of differential and functional equations, Academic Press, New York–London, 1972, xiii+531 pp. | MR | MR | Zbl

[33] R. V. Gamkrelidze, Principles of optimal control theory, Math. Concepts Methods Sci. Engrg., 7, Rev. ed., Plenum Press, New York–London, 1978, xii+175 pp. | MR | MR | Zbl

[34] C. D. Aliprantis, K. C. Border, Infinite dimensional analysis. A hitchhiker's guide, 3rd ed., Springer, Berlin, 2006 | MR | Zbl