Some new function spaces of variable smoothness
Sbornik. Mathematics, Tome 206 (2015) no. 6, pp. 849-891
Voir la notice de l'article provenant de la source Math-Net.Ru
A new Besov space of variable smoothness is introduced on which the norm is defined in terms of difference relations. This space is shown to be the trace of a weighted Sobolev space with a weight in the corresponding Muckenhoupt class. Methods of nonlinear spline approximation are applied to derive an atomic decomposition theorem for functions in a Besov space of variable smoothness. A complete description of traces on the hyperplane of a Besov space of variable smoothness and of a weighted Besov space with a weight in the corresponding Muckenhoupt class is given.
Bibliography: 27 titles.
Keywords:
Muckenhoupt weights, weighted Sobolev spaces, weighted Besov spaces, Besov spaces of variable smoothness.
@article{SM_2015_206_6_a3,
author = {A. I. Tyulenev},
title = {Some new function spaces of variable smoothness},
journal = {Sbornik. Mathematics},
pages = {849--891},
publisher = {mathdoc},
volume = {206},
number = {6},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_6_a3/}
}
A. I. Tyulenev. Some new function spaces of variable smoothness. Sbornik. Mathematics, Tome 206 (2015) no. 6, pp. 849-891. http://geodesic.mathdoc.fr/item/SM_2015_206_6_a3/