@article{SM_2015_206_6_a3,
author = {A. I. Tyulenev},
title = {Some new function spaces of variable smoothness},
journal = {Sbornik. Mathematics},
pages = {849--891},
year = {2015},
volume = {206},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_6_a3/}
}
A. I. Tyulenev. Some new function spaces of variable smoothness. Sbornik. Mathematics, Tome 206 (2015) no. 6, pp. 849-891. http://geodesic.mathdoc.fr/item/SM_2015_206_6_a3/
[1] A. I. Tyulenev, “Description of traces of functions in the Sobolev space with a Muckenhoupt weight”, Proc. Steklov Inst. Math., 284 (2014), 280–295 | DOI | DOI | Zbl
[2] O. V. Besov, “Embeddings of spaces of differentiable functions of variable smoothness”, Proc. Steklov Inst. Math., 214 (1996), 19–53 | MR | Zbl
[3] O. V. Besov, “Equivalent normings of spaces of functions of variable smoothness”, Proc. Steklov Inst. Math., 243 (2003), 80–88 | MR | Zbl
[4] O. V. Besov, “Interpolation, embedding, and extension of spaces of functions of variable smoothness”, Proc. Steklov Inst. Math., 248 (2005), 47–58 | MR | Zbl
[5] H. Kempka, J. Vybíral, “Spaces of variable smoothness and integrability: characterizations by local means and ball means of differences”, J. Fourier Anal. Appl., 18:4 (2012), 852–891 | DOI | MR | Zbl
[6] H. Kempka, Generalized 2-microlocal Besov spaces, Dissertation (Dr. rer. nat.), Friedrich-Schiller-Universität, Jena, 2008, 93 pp.
[7] H. Kempka, “Atomic, molecular and wavelet decomposition of generalized $2$-microlocal Besov spaces”, J. Funct. Spaces Appl., 8:2 (2010), 129–165 | DOI | MR | Zbl
[8] Y. Liang, D. Yang, W. Yuan, Y. Sawano, T. Ullrich, A new framework for generalized Besov-type and Triebel–Lizorkin-type spaces, Dissertationes Math. (Rozprawy Mat.), 489, Polish Acad. Sci. Inst. Math., Warsaw, 2013, 114 pp. | DOI | MR | Zbl
[9] S. D. Moura, J. S. Neves, C. Schneider, “On trace spaces of $2$-microlocal Besov spaces with variable integrability”, Math. Nachr., 286:11-12 (2013), 1240–1254 | DOI | MR | Zbl
[10] H. Rauhut, T. Ullrich, “Generalized coorbit space theory and inhomogeneous function spaces of Besov–Lizorkin–Triebel type”, J. Funct. Anal., 260:11 (2011), 3299–3362 | DOI | MR | Zbl
[11] D. Haroske, H.-J. Schmeisser, “On trace spaces of function spaces with a radial weight: the atomic approach”, Complex Var. Elliptic Equ., 55:8-10 (2010), 875–896 | DOI | MR | Zbl
[12] V. S. Rychkov, “Littlewood–Paley theory and function spaces with $A_p^{\mathrm{loc}}$-weights”, Math. Nachr., 224:1 (2001), 145–180 | 3.0.CO;2-2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[13] L. I. Hedberg, Y. Netrusov, An axiomatic approach to function spaces, spectral synthesis, and Luzin approximation, Mem. Amer. Math. Soc., 188, no. 882, Amer. Math. Soc., Providence, RI, 2007, vi+97 pp. | DOI | MR | Zbl
[14] O. V. Besov, “On spaces of functions of smoothness zero”, Sb. Math., 203:8 (2012), 1077–1090 | DOI | DOI | MR | Zbl
[15] O. V. Besov, “To the Sobolev embedding theorem for the limiting exponent”, Proc. Steklov Inst. Math., 284 (2014), 81–96 | DOI | DOI | Zbl
[16] R. A. DeVore, V. A. Popov, “Interpolation of Besov spaces”, Trans. Amer. Math. Soc., 305:1 (1988), 397–414 | DOI | MR | Zbl
[17] M. Izuki, Y. Sawano, “Atomic decomposition for weighted Besov and Triebel–Lizorkin spaces”, Math. Nachr., 285:1 (2012), 103–126 | DOI | MR | Zbl
[18] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, 1993, xiv+695 pp. | MR | Zbl
[19] Yu. A. Brudnyĭ, “Spaces defined by means of local approximations”, Trans. Moscow Math. Soc., 24(1971), Amer. Math. Soc., Providence, RI, 1974, 73–139 | MR | Zbl
[20] P. Oswald, E. A. Storozhenko, “Jackson's theorem in the spaces $L_p(\mathbb R^k)$, $0
1$”, Siberian Math. J., 19:4 (1978), 630–640 | MR | Zbl[21] O. V. Besov, “Investigation of a family of function spaces in connection with theorems of imbedding and extension”, Amer. Math. Soc. Transl. Ser. 2, 40, Amer. Math. Soc., Providence, R.I., 1964, 85–126 | Zbl
[22] V. I. Burenkov, Sobolev spaces on domains, Teubner-Texte Math., 137, B. G. Teubner Verlagsgesellschaft mbH, Stuttgart, 1998, 312 pp. | DOI | MR | Zbl
[23] C. de Boor, A practical guide to splines, Appl. Math. Sci., 27, Springer-Verlag, New York–Berlin, 1978, xxiv+392 pp. | MR | MR | Zbl
[24] H. B. Curry, I. J. Schoenberg, “On Pólya frequency functions. IV. The fundamental spline functions and their limits”, J. Analyse Math., 1966, no. 17, 71–107 | DOI | MR | Zbl
[25] C. de Boor,G. F. Fix, “Spline approximation by quasiinterpolants”, J. Approximation Theory, 8:1 (1973), 19–45 | DOI | MR | Zbl
[26] I. P. Irodova, “Dyadic Besov spaces”, St. Petersburg Math. J., 12:3 (2001), 379–405 | MR | Zbl
[27] T. Kühn, H.-G. Leopold, W. Sickel, L. Skrzypczak, “Entropy numbers of embeddings of weighted Besov spaces. II”, Proc. Edinb. Math. Soc. (2), 49:2 (2006), 331–359 | DOI | MR | Zbl