On the Barth-Van de Ven-Tyurin-Sato theorem
Sbornik. Mathematics, Tome 206 (2015) no. 6, pp. 814-848 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Barth-Van de Ven-Tyurin-Sato Theorem states that any finite-rank vector bundle on the complex projective ind-space $\mathbf{P}^\infty$ is isomorphic to a direct sum of line bundles. We establish sufficient conditions on a locally complete linear ind-variety $\mathbf{X}$ which ensure that the same result holds on $\mathbf{X}$. We then exhibit natural classes of locally complete linear ind-varieties which satisfy these sufficient conditions. Bibliography: 18 titles.
Keywords: ind-variety, vector bundle.
@article{SM_2015_206_6_a2,
     author = {I. B. Penkov and A. S. Tikhomirov},
     title = {On the {Barth-Van} de {Ven-Tyurin-Sato} theorem},
     journal = {Sbornik. Mathematics},
     pages = {814--848},
     year = {2015},
     volume = {206},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_6_a2/}
}
TY  - JOUR
AU  - I. B. Penkov
AU  - A. S. Tikhomirov
TI  - On the Barth-Van de Ven-Tyurin-Sato theorem
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 814
EP  - 848
VL  - 206
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_6_a2/
LA  - en
ID  - SM_2015_206_6_a2
ER  - 
%0 Journal Article
%A I. B. Penkov
%A A. S. Tikhomirov
%T On the Barth-Van de Ven-Tyurin-Sato theorem
%J Sbornik. Mathematics
%D 2015
%P 814-848
%V 206
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2015_206_6_a2/
%G en
%F SM_2015_206_6_a2
I. B. Penkov; A. S. Tikhomirov. On the Barth-Van de Ven-Tyurin-Sato theorem. Sbornik. Mathematics, Tome 206 (2015) no. 6, pp. 814-848. http://geodesic.mathdoc.fr/item/SM_2015_206_6_a2/

[1] W. Barth, A. Van de Ven, “A decomposability criterion for algebraic 2-bundles on projective spaces”, Invent. Math., 25:1 (1974), 91–106 | DOI | MR | Zbl

[2] A. N. Tjurin, “Vector bundles of finite rank over infinite varieties”, Math. USSR-Izv., 10:6 (1976), 1187–1204 | DOI | MR | Zbl

[3] E. Sato, “On the decomposability of infinitely extendable vector bundles on projective spaces and Grassmann varieties”, J. Math. Kyoto Univ., 17:1 (1977), 127–150 | MR | Zbl

[4] J. Donin, I. Penkov, “Finite rank vector bundles on inductive limits of Grassmannians”, Int. Math. Res. Not., 2003:34 (2003), 1871–1887 | DOI | MR | Zbl

[5] I. Penkov, A. S. Tikhomirov, “Rank-2 vector bundles on ind-Grassmannians”, Algebra, arithmetic, and geometry, In honor of Yu. I. Manin, v. II, 270, Progr. Math., Boston, MA, 2009, 555–572 | DOI | MR | Zbl

[6] I. Penkov, A. S. Tikhomirov, “Triviality of vector bundles on twisted ind-Grassmannians”, Sb. Math., 202:1 (2011), 61–99 | DOI | DOI | MR | Zbl

[7] E. Sato, “On infinitely extendable vector bundles on $G/P$”, J. Math. Kyoto Univ., 19:1 (1979), 171–189 | MR | Zbl

[8] E. Sato, “The decomposability of an infinitely extendable vector bundle on the projective space. II”, Proceedings of the International symposium on algebraic geometry (Kyoto Univ., Kyoto, 1977), Kinokuniya, Tokyo, 1978, 663–672 | MR | Zbl

[9] W. Fulton, Intersection theory, Ergeb. Math. Grenzgeb. (3), 2, 2nd ed., Springer-Verlag, Berlin, 1998, xiv+470 pp. | DOI | MR | Zbl

[10] R. Hartshorne, “On the De Rham cohomology of algebraic varieties”, Inst. Hautes Études Sci. Publ. Math., 45 (1975), 5–99 | DOI | MR | Zbl

[11] I. Dimitrov, I. Penkov, J. A. Wolf, “A Bott–Borel–Weil theory for direct limits of algebraic groups”, Amer. J. Math., 124:5 (2002), 955–998 | DOI | MR | Zbl

[12] I. Penkov, A. S. Tikhomirov, “Linear ind-Grassmannnians”, Pure Appl. Math. Q., 10:2 (2014), 289–323 | DOI | MR | Zbl

[13] R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg, 1977, xvi+496 pp. | MR | Zbl

[14] C. Okonek, M. Schneider, H. Spindler, Vector bundles on complex projective spaces, Progr. Math., 3, Birkhäuser, Boston, Mass., 1980, vii+389 pp. | MR | Zbl

[15] J. Harris, Algebraic geometry. A first course, Corrected reprint of the 1992 original, Grad. Texts in Math., 133, Springer-Verlag, New York, 1995, xx+328 pp. | DOI | MR | Zbl

[16] I. Dimitrov, I. Penkov, “Ind-varieties of generalized flags as homogeneous spaces for classical ind-groups”, Int. Math. Res. Not., 55 (2004), 2935–2953 | DOI | MR | Zbl

[17] R. Hartshorne, “Stable reflexive sheaves”, Math. Ann., 254:2 (1980), 121–176 | DOI | MR | Zbl

[18] D. Mumford, Abelian varieties, Tata Inst. Fundam. Res. Stud. Math., 5, 2nd ed., Oxford Univ. Press, London, 1974, x+279 pp. | MR | Zbl | Zbl