Scattering anomalies in a resonator above the thresholds of the continuous spectrum
Sbornik. Mathematics, Tome 206 (2015) no. 6, pp. 782-813 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Dirichlet spectral problem for the Laplace operator in a multi-dimensional domain with a cylindrical outlet to infinity, a Helmholtz resonator. Using asymptotic analysis of the scattering matrix we demonstrate different types of reflection of high-amplitude near-threshold waves. One scattering type or another, unstable or stable with respect to variations of the resonator shapes, is determined by the presence or absence of stabilizing solutions at the threshold frequency, respectively. In a waveguide with two cylindrical outlets to infinity, we discover the effect of almost complete passage of the wave under ‘fine tuning’ of the resonator. Bibliography: 26 titles.
Keywords: Helmholtz resonator, scattering problem, thresholds of continuous spectrum, waves at near-threshold frequencies, almost complete reflection and passage.
@article{SM_2015_206_6_a1,
     author = {S. A. Nazarov},
     title = {Scattering anomalies in a~resonator above~the~thresholds of the continuous spectrum},
     journal = {Sbornik. Mathematics},
     pages = {782--813},
     year = {2015},
     volume = {206},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_6_a1/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Scattering anomalies in a resonator above the thresholds of the continuous spectrum
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 782
EP  - 813
VL  - 206
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_6_a1/
LA  - en
ID  - SM_2015_206_6_a1
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Scattering anomalies in a resonator above the thresholds of the continuous spectrum
%J Sbornik. Mathematics
%D 2015
%P 782-813
%V 206
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2015_206_6_a1/
%G en
%F SM_2015_206_6_a1
S. A. Nazarov. Scattering anomalies in a resonator above the thresholds of the continuous spectrum. Sbornik. Mathematics, Tome 206 (2015) no. 6, pp. 782-813. http://geodesic.mathdoc.fr/item/SM_2015_206_6_a1/

[1] M. Sh. Birman, M. Z. Solomjak, Spectral theory of selfadjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), D. Reidel Publishing Co., Dordrecht, 1987, xv+301 pp. | MR | MR | Zbl

[2] M. Sh. Birman, G. E. Skvortsov, “O kvadratichnoi summiruemosti starshikh proizvodnykh resheniya zadachi Dirikhle v oblasti s kusochno gladkoi granitsei”, Izv. vuzov. Matem., 1962, no. 5(30), 12–21 | MR | Zbl

[3] S. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Exp. Math., 13, Walter de Gruyter Co., Berlin, 1994, viii+525 pp. | DOI | MR | Zbl

[4] C. H. Wilcox, Scattering theory for diffraction gratings, Appl. Math. Sci., 46, Springer-Verlag, New-York, 1984, ix+163 pp. | DOI | MR | Zbl

[5] S. A. Nazarov, B. A. Plamenevskii, “Radiation conditions for selfadjoint elliptic problems”, Soviet Math. Dokl., 41:2 (1990), 274–277 | MR | Zbl

[6] C. A. Nazarov, B. A. Plamenevskii, “Printsipy izlucheniya dlya samosopryazhennykh ellipticheskikh zadach”, Differentsialnye uravneniya. Spektralnaya teoriya. Raspoznavanie voln, Problemy matem. fiziki, 13, Izd-vo Leningr. un-ta, L., 1991, 192–244 | MR | Zbl

[7] N. A. Umov, Uravneniya dvizheniya energii v telakh, Tip. Ulrikha i Shultse, Odessa, 1874, 56 pp.

[8] J. H. Poynting, “On the transfer of energy in the electromagnetic field”, Philos. Trans. R. Soc. Lond., 175 (1884), 343–361 | DOI | Zbl

[9] I. I. Vorovich, V. A. Babeshko, Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastei, Nauka, M., 1979, 320 pp. | MR | Zbl

[10] S. A. Nazarov, “The Mandelstam energy radiation conditions and the Umov–Poynting vector in elastic waveguides”, J. Math. Sci. (N. Y.), 195:5 (2013), 676–729 | DOI | MR | Zbl

[11] S. A. Nazarov, “Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide”, Theoret. and Math. Phys., 167:2 (2011), 606–627 | DOI | DOI | MR | Zbl

[12] V. A. Kondrat'ev, “Boundary problems for elliptic equations in domains with conical or angular points”, Trans. Mosc. Math. Soc., 16 (1967), 227–313 | MR | Zbl

[13] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966, xix+592 pp. | MR | MR | Zbl | Zbl

[14] M. D. Van Daik, Metody vozmuschenii v mekhanike zhidkostei, Appl. Math. Mech., 8, Mir, M., 1967, 312 pp. | MR | Zbl | Zbl

[15] A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Transl. Math. Monogr., 102, Amer. Math. Soc., Providence, RI, 1992, x+281 pp. | MR | MR | Zbl | Zbl

[16] S. A. Nazarov, “Variational and asymptotic methods for finding eigenvalues below the continuous spectrum threshold”, Siberian Math. J., 51:5 (2010), 866–878 | DOI | MR | Zbl

[17] S. A. Nazarov, “Enforced stability of a simple eigenvalue in the continuous spectrum of a waveguide”, Funct. Anal. Appl., 47:3 (2013), 195–209 | DOI | DOI | MR | Zbl

[18] W. G. Mazja, S. A. Nasarow, B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten. I. Störungen isolierter Randsingularitäten, Math. Lehrbucher und Monogr., 82, Akademie-Verlag, Berlin, 1991, 432 pp. | MR

[19] W. Bulla, F. Gesztesy, W. Renger, B. Simon, “Weakly coupled bound states in quantum waveguides”, Proc. Amer. Math. Soc., 125:5 (1997), 1487–1495 | DOI | MR | Zbl

[20] V. V. Grushin, “On the eigenvalues of finitely perturbed Laplace operators in infinite cylindrical domains”, Math. Notes, 75:3 (2004), 331–340 | DOI | DOI | MR | Zbl

[21] R. R. Gadyl'shin, “Local perturbations of quantum waveguides”, Theoret. and Math. Phys., 145:3 (2005), 1678–1690 | DOI | DOI | MR | Zbl

[22] S. A. Nazarov, “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains”, Sobolev spaces in mathematics, v. II, Int. Math. Ser. (N. Y.), 9, Springer, New York, 2009, 261–309 | DOI | MR | Zbl

[23] R. Leis, Initial boundary value problems in mathematical physics, B. G. Teubner, Stuttgart; John Wiley Sons, Ltd., Chichester, 1986, viii+266 pp. | DOI | MR | Zbl

[24] L. A. Vainshtein, Teoriya difraktsii i metod faktorizatsii, Sovetskoe radio, M., 1966, 431 pp.

[25] A. V. Shanin, A. I. Korol'kov, “Wave reflection from a diffraction grating consisting of absorbing screens: Description in terms of the Wiener–Hopf–Fock method”, Acoust. Phys., 60:6, 624–632 | DOI

[26] S. A. Nazarov, “Discrete spectrum of cross-shaped quantum waveguides”, J. Math. Sci. (N. Y.), 196:3 (2014), 346–376 | DOI | Zbl