@article{SM_2015_206_6_a1,
author = {S. A. Nazarov},
title = {Scattering anomalies in a~resonator above~the~thresholds of the continuous spectrum},
journal = {Sbornik. Mathematics},
pages = {782--813},
year = {2015},
volume = {206},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_6_a1/}
}
S. A. Nazarov. Scattering anomalies in a resonator above the thresholds of the continuous spectrum. Sbornik. Mathematics, Tome 206 (2015) no. 6, pp. 782-813. http://geodesic.mathdoc.fr/item/SM_2015_206_6_a1/
[1] M. Sh. Birman, M. Z. Solomjak, Spectral theory of selfadjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), D. Reidel Publishing Co., Dordrecht, 1987, xv+301 pp. | MR | MR | Zbl
[2] M. Sh. Birman, G. E. Skvortsov, “O kvadratichnoi summiruemosti starshikh proizvodnykh resheniya zadachi Dirikhle v oblasti s kusochno gladkoi granitsei”, Izv. vuzov. Matem., 1962, no. 5(30), 12–21 | MR | Zbl
[3] S. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Exp. Math., 13, Walter de Gruyter Co., Berlin, 1994, viii+525 pp. | DOI | MR | Zbl
[4] C. H. Wilcox, Scattering theory for diffraction gratings, Appl. Math. Sci., 46, Springer-Verlag, New-York, 1984, ix+163 pp. | DOI | MR | Zbl
[5] S. A. Nazarov, B. A. Plamenevskii, “Radiation conditions for selfadjoint elliptic problems”, Soviet Math. Dokl., 41:2 (1990), 274–277 | MR | Zbl
[6] C. A. Nazarov, B. A. Plamenevskii, “Printsipy izlucheniya dlya samosopryazhennykh ellipticheskikh zadach”, Differentsialnye uravneniya. Spektralnaya teoriya. Raspoznavanie voln, Problemy matem. fiziki, 13, Izd-vo Leningr. un-ta, L., 1991, 192–244 | MR | Zbl
[7] N. A. Umov, Uravneniya dvizheniya energii v telakh, Tip. Ulrikha i Shultse, Odessa, 1874, 56 pp.
[8] J. H. Poynting, “On the transfer of energy in the electromagnetic field”, Philos. Trans. R. Soc. Lond., 175 (1884), 343–361 | DOI | Zbl
[9] I. I. Vorovich, V. A. Babeshko, Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastei, Nauka, M., 1979, 320 pp. | MR | Zbl
[10] S. A. Nazarov, “The Mandelstam energy radiation conditions and the Umov–Poynting vector in elastic waveguides”, J. Math. Sci. (N. Y.), 195:5 (2013), 676–729 | DOI | MR | Zbl
[11] S. A. Nazarov, “Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide”, Theoret. and Math. Phys., 167:2 (2011), 606–627 | DOI | DOI | MR | Zbl
[12] V. A. Kondrat'ev, “Boundary problems for elliptic equations in domains with conical or angular points”, Trans. Mosc. Math. Soc., 16 (1967), 227–313 | MR | Zbl
[13] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966, xix+592 pp. | MR | MR | Zbl | Zbl
[14] M. D. Van Daik, Metody vozmuschenii v mekhanike zhidkostei, Appl. Math. Mech., 8, Mir, M., 1967, 312 pp. | MR | Zbl | Zbl
[15] A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Transl. Math. Monogr., 102, Amer. Math. Soc., Providence, RI, 1992, x+281 pp. | MR | MR | Zbl | Zbl
[16] S. A. Nazarov, “Variational and asymptotic methods for finding eigenvalues below the continuous spectrum threshold”, Siberian Math. J., 51:5 (2010), 866–878 | DOI | MR | Zbl
[17] S. A. Nazarov, “Enforced stability of a simple eigenvalue in the continuous spectrum of a waveguide”, Funct. Anal. Appl., 47:3 (2013), 195–209 | DOI | DOI | MR | Zbl
[18] W. G. Mazja, S. A. Nasarow, B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten. I. Störungen isolierter Randsingularitäten, Math. Lehrbucher und Monogr., 82, Akademie-Verlag, Berlin, 1991, 432 pp. | MR
[19] W. Bulla, F. Gesztesy, W. Renger, B. Simon, “Weakly coupled bound states in quantum waveguides”, Proc. Amer. Math. Soc., 125:5 (1997), 1487–1495 | DOI | MR | Zbl
[20] V. V. Grushin, “On the eigenvalues of finitely perturbed Laplace operators in infinite cylindrical domains”, Math. Notes, 75:3 (2004), 331–340 | DOI | DOI | MR | Zbl
[21] R. R. Gadyl'shin, “Local perturbations of quantum waveguides”, Theoret. and Math. Phys., 145:3 (2005), 1678–1690 | DOI | DOI | MR | Zbl
[22] S. A. Nazarov, “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains”, Sobolev spaces in mathematics, v. II, Int. Math. Ser. (N. Y.), 9, Springer, New York, 2009, 261–309 | DOI | MR | Zbl
[23] R. Leis, Initial boundary value problems in mathematical physics, B. G. Teubner, Stuttgart; John Wiley Sons, Ltd., Chichester, 1986, viii+266 pp. | DOI | MR | Zbl
[24] L. A. Vainshtein, Teoriya difraktsii i metod faktorizatsii, Sovetskoe radio, M., 1966, 431 pp.
[25] A. V. Shanin, A. I. Korol'kov, “Wave reflection from a diffraction grating consisting of absorbing screens: Description in terms of the Wiener–Hopf–Fock method”, Acoust. Phys., 60:6, 624–632 | DOI
[26] S. A. Nazarov, “Discrete spectrum of cross-shaped quantum waveguides”, J. Math. Sci. (N. Y.), 196:3 (2014), 346–376 | DOI | Zbl