Subdiscriminants of a symmetric matrix and Jacobians of its invariant mappings
Sbornik. Mathematics, Tome 206 (2015) no. 6, pp. 770-781 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present expressions for subdiscriminants of a symmetric matrix using sums of squares of the Jacobians of some invariant mappings of the matrix. We give simple and rather general sufficient conditions on these mappings under which they generate all subdiscriminants, including the discriminant. In particular, the subdiscriminants can be generated in this way by the system of all invariants of a symmetric matrix, that is, by the coefficients of its characteristic polynomial. Bibliography: 10 titles.
Keywords: Jacobians, sums of squares.
Mots-clés : subdiscriminants
@article{SM_2015_206_6_a0,
     author = {N. V. Ilyushechkin},
     title = {Subdiscriminants of a~symmetric matrix and {Jacobians} of its invariant mappings},
     journal = {Sbornik. Mathematics},
     pages = {770--781},
     year = {2015},
     volume = {206},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_6_a0/}
}
TY  - JOUR
AU  - N. V. Ilyushechkin
TI  - Subdiscriminants of a symmetric matrix and Jacobians of its invariant mappings
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 770
EP  - 781
VL  - 206
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_6_a0/
LA  - en
ID  - SM_2015_206_6_a0
ER  - 
%0 Journal Article
%A N. V. Ilyushechkin
%T Subdiscriminants of a symmetric matrix and Jacobians of its invariant mappings
%J Sbornik. Mathematics
%D 2015
%P 770-781
%V 206
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2015_206_6_a0/
%G en
%F SM_2015_206_6_a0
N. V. Ilyushechkin. Subdiscriminants of a symmetric matrix and Jacobians of its invariant mappings. Sbornik. Mathematics, Tome 206 (2015) no. 6, pp. 770-781. http://geodesic.mathdoc.fr/item/SM_2015_206_6_a0/

[1] N. V. Ilyushechkin, “On a certain class of smooth matrix-valued functions”, Russian Math. Surveys, 40:1 (1985), 223–224 | DOI | MR | Zbl

[2] N. V. Ilyushechkin, “Discriminant of the characteristic polynomial of a normal matrix”, Math. Notes, 51:3 (1992), 230–235 | DOI | MR | Zbl

[3] N. V. Ilyushechkin, “On some identities for elements of a symmetric matrix”, J. Math. Sci. (N. Y.), 129:4 (2005), 3994–4008 | DOI | MR | Zbl

[4] N. V. Ilyushechkin, “On relations between summands in the discriminant of a symmetric matrix”, Math. Notes, 93:2 (2013), 337–339 | DOI | DOI | MR | Zbl

[5] B. N. Parlett, “The (matrix) discriminant as a determinant”, Linear Algebra Appl., 355:1-3 (2002), 85–101 | DOI | MR | Zbl

[6] Kh. D. Ikramov, “On the dimension of the variety of symmetric matrices with multiple eigenvalues”, Comput. Math. Math. Phys., 44:6 (2004), 911–915 | MR | Zbl

[7] M. Dana, Kh. D. Ikramov, “On the codimension of the variety of symmetric matrices with multiple eigenvalues”, J. Math. Sci. (N. Y.), 137:3 (2006), 4780–4786 | DOI | MR | Zbl

[8] M.-F. Roy, Mathematics, algorithms, proofs (2005), Dagstuhl Seminar Proceedings, 05021, IBFI, Dagstuhl, Germany, 2006, 4 pp. {http://drops.dagstuhl.de/opus/volltexte/2006/347}

[9] S. Basu, R. Pollack, M. -F. Roy, Algorithms in real algebraic geometry, Algorithms Comput. Math., 10, Springer-Verlag, Berlin, 2003, viii+602 pp. | DOI | MR | Zbl

[10] F. R. Gantmacher, The theory of matrices, v. 1, 2, Chelsea Publishing Co., New York, 1959, x+374 pp., ix+276 pp. | MR | MR | Zbl | Zbl