@article{SM_2015_206_5_a5,
author = {I. V. Sypchenko and D. S. Timonina},
title = {Closed geodesics on piecewise smooth surfaces of revolution with constant curvature},
journal = {Sbornik. Mathematics},
pages = {738--769},
year = {2015},
volume = {206},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_5_a5/}
}
I. V. Sypchenko; D. S. Timonina. Closed geodesics on piecewise smooth surfaces of revolution with constant curvature. Sbornik. Mathematics, Tome 206 (2015) no. 5, pp. 738-769. http://geodesic.mathdoc.fr/item/SM_2015_206_5_a5/
[1] G. D. Birkhoff, “Dynamical systems with two degrees of freedom”, Trans. Amer. Math. Soc, 18 (1917), 199–300 | DOI | MR | Zbl
[2] A. D. Alexandrow, Konvexe polyeder, Math. Lehrbucher und Monogr., VIII, Akademie-Verlag, Berlin, 1958, x+419 pp. | MR | MR | Zbl | Zbl
[3] V. Yu. Protasov, “Closed geodesics on the surface of a simplex”, Sb. Math., 198:2 (2007), 243–260 | DOI | DOI | MR | Zbl
[4] H. Steinhaus, Sto zadań, Państwowe Wydawnictwo Naukowe, Warsaw, 1958, 196 pp. | MR | MR | Zbl
[5] H. Poincaré, “Sur les lignes géodésiques des surfaces convexes”, Trans. Amer. Math. Soc., 6 (1905), 237–274 | DOI | MR | MR | Zbl | Zbl
[6] W. Klingenberg, Lectures on closed geodesics, Grundlehren Math. Wiss., 230, Springer-Verlag, Berlin–New York, 1978, x+227 pp. | MR | MR | Zbl | Zbl
[7] A. L. Besse, Manifolds all of whose geodesics are closed, Ergeb. Math. Grenzgeb., 93, Springer-Verlag, Berlin–New York, 1978, ix+262 pp. | MR | MR | Zbl
[8] R. Bott, “On manifolds all of whose geodesics are closed”, Ann. of Math. (2), 60:3 (1954), 375–382 | DOI | MR | MR | Zbl | Zbl
[9] S. I. Al'ber, “The topology of functional manifolds and the calculus of variations in the large”, Russian Math. Surveys, 25:4 (1970), 51–117 | DOI | MR | Zbl
[10] D. V. Anosov, “On generic properties of closed geodesics”, Math. USSR-Izv., 21:1 (1983), 1–29 | DOI | MR | Zbl
[11] H. Busemann, The geometry of geodesics, Academic Press Inc., New York, 1955, x+422 pp. | MR | MR | Zbl | Zbl
[12] J. A. Wolf, Spaces of constant curvature, 3rd ed., Publish or Perish, Inc., Boston, Mass., 1972, xv+408 pp. | MR | MR | Zbl | Zbl
[13] D. Gromoll, W. Klingenberg, W. Meyer, Riemannsche Geometrie im Großen, Lecture Notes in Math., 55, Springer-Verlag, Berlin–New York, 1968, vi+287 pp. | MR | Zbl
[14] J. Milnor, Morse theory, Ann. of Math. Stud., 51, Princeton Univ. Press, Princeton, NJ, 1963, vi+153 pp. | MR | MR | Zbl
[15] C. G. J. Jacobi, Vorlesungen über Dynamik, C. G. J. Jacobi's gesammelte Werke, 2. rev. Ausg., G. Reimer, Berlin, 1884, viii+300 pp. | MR | Zbl
[16] O. A. Zagryadskii, E. A. Kudryavtseva, D. A. Fedoseev, “A generalization of Bertrand's theorem to surfaces of revolution”, Sb. Math., 203:8 (2012), 1112–1150 | DOI | DOI | MR | Zbl
[17] D. A. Fedoseev, O. A. Zagryadskii, “The explicit form of the Bertrand metric”, Moscow Univ. Math. Bull., 68:5 (2013), 258–262 | DOI | MR
[18] E. A. Kudryavtseva, D. A. Fedoseev, “Mekhanicheskie sistemy s zamknutymi orbitami na mnogoobraziyakh vrascheniya”, Matem. sb., 206:5 (2015), 105–124
[19] A. O. Ivanov, A. A. Tuzhilin, Branching solutions to one-dimensional variational problems, World Scientific Publishing Co., Inc., River Edge, NJ, 2001, xxii+342 pp. | DOI | MR | Zbl
[20] A. O. Ivanov, A. A. Tuzhilin, Teoriya ekstremalnykh setei, M.–Izhevsk, Institut kompyuternykh issledovanii, 2003, 424 pp.
[21] N. P. Strelkova, “Realization of plane graphs as closed locally minimal nets on convex polyhedra”, Dokl. Math., 82:3 (2010), 939–941 | DOI | MR | Zbl
[22] N. P. Strelkova, “Closed locally minimal nets on tetrahedra”, Sb. Math., 202:1 (2011), 135–153 | DOI | DOI | MR | Zbl
[23] A. T. Fomenko, A. A. Tuzhilin, Elements of the geometry and topology of minimal surfaces in three-dimensional space, Transl. Math. Monogr., 93, Amer. Math. Soc., Providence, RI, 1991, viii+142 pp. | MR | MR | Zbl | Zbl
[24] Nguyen Tien Zung, A. T. Fomenko, “Topological classification of integrable non-degenerate Hamiltonians on a constant energy three-dimensional sphere”, Russian Math. Surveys, 45:6 (1990), 109–135 | DOI | MR | Zbl
[25] A. V. Bolsinov, A. T. Fomenko, “Application of classification theory for integrable Hamiltonian systems to geodesic flows on 2-sphere and 2-torus and to the description of the topological structure of momentum mapping near singular point”, J. Math. Sci., 78:5 (1996), 542–555 | DOI | MR | Zbl
[26] A. V. Bolsinov, V. S. Matveev, A. T. Fomenko, “Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry”, Sb. Math., 189:10 (1998), 1441–1466 | DOI | DOI | MR | Zbl
[27] A. V. Bolsinov, V. V. Kozlov, A. T. Fomenko, “The Maupertuis principle and geodesic flows on the sphere arising from integrable cases in the dynamics of a rigid body”, Russian Math. Surveys, 50:3 (1995), 473–501 | DOI | MR | Zbl
[28] A. V. Bolsinov, A. T. Fomenko, “Geodezicheskii potok ellipsoida traektorno ekvivalenten integriruemomu sluchayu Eilera v dinamike tverdogo tela”, Dokl. RAN, 339:3 (1994), 253–296 | MR | Zbl
[29] A. V. Bolsinov, A. T. Fomenko, “Orbital classification of geodesic flows on two-dimensional ellipsoids. The Jacobi problem is orbitally equivalent to the integrable Euler case in rigid body dynamics”, Funct. Anal. Appl., 29:3 (1995), 149–160 | DOI | MR | Zbl
[30] A. V. Bolsinov, A. T. Fomenko, Geometriya i topologiya integriruemykh geodezicheskikh potokov na poverkhnostyakh, Biblioteka «Regulyarnaya i khaoticheskaya dinamika», 2, M., Editorial URSS, 1999, 328 pp.
[31] A. O. Ivanov, A. A. Tuzhilin, Lektsii po differentsialnoi geometrii i topologii, M., MGU, 2012, 176 pp.
[32] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, v. 1–3, 6-e izd., M., URSS, 2013, 920 pp. ; B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry – methods and applications, Part I, Grad. Texts in Math., 93, Springer-Verlag, New York, 1984, xv+464 с. ; Part II, 104, 1985, xv+430 pp. ; Part III, 124, 1990, x+416 pp. | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl
[33] V. V. Kozlov, D. V. Treshchev, Billiards. A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991, viii+171 pp. | MR | MR | Zbl | Zbl
[34] V. V. Fokicheva, “Description of singularities for the “billiard in an ellipse” system”, Moscow Univ. Math. Bull., 67:5-6 (2012), 217–220 | DOI | MR | Zbl
[35] V. V. Fokicheva, A. T. Fomenko, “Topologiya i osobennosti billiardov”, Materialy mezhdunarodnoi konferentsii “Voronezhskaya zimnyaya matematicheskaya shkola S. G. Kreina”–2014, Izd-vo Voronezh. un-ta, Voronezh, 2014, 372–385
[36] V. V. Fokicheva, “Opisanie osobennostei sistemy bilyarda v oblastyakh, ogranichennykh sofokusnymi ellipsami i giperbolami”, Vestn. Mosk. un-ta. Ser. 1 Matem. Mekh. (to appear)
[37] V. V. Fokicheva, “Classification of billiard motions in domains bounded by confocal parabolas”, Sb. Math., 205:8 (2014), 1201–1221 | DOI | DOI | MR | Zbl
[38] A. T. Fomenko, “Topological classification of integrable systems and billiards in confocal quadrics”, 13th Serbian Mathematical Congress. Book of abstracts (Vrnjacka Banja, Serbia, May 22–25, 2014), Faculty of sciences and mathematics, University of Nis, Belgrade, 2014, 82
[39] A. T. Fomenko, “Topological classification of integrable systems and billiards in confocal quadrics”, XVIII Geometrical Seminar. Book of abstracts (Vrnjacka Banja, Serbia, May 25–28, 2014), Faculty of Sciences and Mathematics, University of Nis, Belgrade, 2014, 38–39
[40] E. O. Kantonistova, “Integer lattices of the action variables for the generalized Lagrange case”, Moscow Univ. Math. Bull., 67:1 (2012), 36–40 | DOI | MR | Zbl