Mots-clés : Darboux transformation.
@article{SM_2015_206_5_a3,
author = {A. B. Zheglov and H. Kurke},
title = {Geometric properties of commutative subalgebras of partial differential operators},
journal = {Sbornik. Mathematics},
pages = {676--717},
year = {2015},
volume = {206},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_5_a3/}
}
A. B. Zheglov; H. Kurke. Geometric properties of commutative subalgebras of partial differential operators. Sbornik. Mathematics, Tome 206 (2015) no. 5, pp. 676-717. http://geodesic.mathdoc.fr/item/SM_2015_206_5_a3/
[1] A. B. Zheglov, “On rings of commuting partial differential operators”, St. Petersburg Math. J., 25:5 (2014), 775–814 | DOI | MR | Zbl
[2] H. Kurke, D. Osipov, A. Zheglov, “Commuting differential operators and higher-dimensional algebraic varieties”, Selecta Math. (N.S.), 20:4 (2014), 1159–1195 | DOI | MR | Zbl
[3] A. Braverman, P. Etingof, D. Gaitsgory, “Quantum integrable systems and differential Galois theory”, Transform. Groups, 2:1 (1997), 31–56 | DOI | MR | Zbl
[4] I. M. Krichever, “Commutative rings of ordinary linear differential operators”, Funct. Anal. Appl., 12:3 (1978), 175–185 | DOI | MR | Zbl
[5] I. M. Krichever, “Methods of algebraic geometry in the theory of non-linear equations”, Russian Math. Surveys, 32:6 (1977), 185–213 | DOI | MR | Zbl
[6] O. A. Chalykh, A. P. Veselov, “Commutative rings of partial differential operators and Lie algebras”, Comm. Math. Phys., 126:3 (1990), 597–611 | DOI | MR | Zbl
[7] O. A. Chalykh, A. P. Veselov, “Integrability in the theory of the Schrödinger operator and harmonic analysis”, Comm. Math. Phys., 152:1 (1993), 29–40 | DOI | MR | Zbl
[8] A. P. Veselov, K. L. Styrkas, O. A. Chalykh, “Algebraic integrability for the Schrödinger equation and finite reflection groups”, Theoret. and Math. Phys., 94:2 (1993), 182–197 | DOI | MR | Zbl
[9] M. A. Olshanetsky, A. M. Perelomov, “Quantum integrable systems related to Lie algebras”, Phys. Rep., 94:6 (1983), 313–404 | DOI | MR
[10] M. Feigin, A. P. Veselov, “Quasi-invariants of Coxeter groups and $m$-harmonic polynomials”, Int. Math. Res. Not., 2002:10 (2002), 521–545 | DOI | MR | Zbl
[11] M. Feigin, A. P. Veselov, “Quasi-invariants and quantum integrals of the deformed Calogero–Moser systems”, Int. Math. Res. Not., 2003:46 (2003), 2487–2511 | DOI | MR | Zbl
[12] P. Etingof, V. A. Ginzburg, “On $m$-quasi-invariants of a Coxeter group”, Mosc. Math. J., 2:3 (2002), 555–566 | MR | Zbl
[13] O. Chalykh, “Algebro-geometric Schrödinger operators in many dimensions”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 366:1867 (2008), 947–971 | DOI | MR | Zbl
[14] Yu. Berest, P. Etingof, V. Ginzburg, “Cherednik algebras and differential operators on quasi-invariants”, Duke Math. J., 118:2 (2003), 279–337 | DOI | MR | Zbl
[15] Yu. Berest, A. Kasman, “$\mathscr D$-modules and Darboux transformations”, Lett. Math. Phys., 43:3 (1998), 279–294 | DOI | MR | Zbl
[16] A. Nakayashiki, “Commuting partial differential operators and vector bundles over Abelian varieties”, Amer. J. Math., 116:1 (1994), 65–100 | DOI | MR | Zbl
[17] A. E. Mironov, “Commutative rings of differential operators corresponding to multidimensional algebraic varieties”, Siberian Math. J., 43:5 (2002), 888–898 | DOI | MR | Zbl
[18] A. N. Parshin, “On a ring of formal pseudodifferential operators”, Proc. Steklov Inst. Math., 224 (1999), 266–280 | MR | Zbl
[19] A. B. Zheglov, Two dimensional KP systems and their solvability, 2005, 43 pp., arXiv: math-ph/0503067
[20] H. Kurke, D. V. Osipov, A. B. Zheglov, “Formal groups arising from formal punctured ribbons”, Internat. J. Math., 21:6 (2010), 755–797 | DOI | MR | Zbl
[21] J. A. Morrow, “Minimal normal compactifications of $\mathbb{C}^2$”, Complex analysis, 1972 (Proc. Conf., Rice Univ., Houston, Tex., 1972), Vol. I: Geometry of singularities, Rice Univ. Studies, 59:1 (1973), 97–112 | MR | Zbl
[22] H. Kojima, T. Takahashi, “Notes on minimal compactifications of the affine plane”, Ann. Mat. Pura Appl. (4), 188:1 (2009), 153–169 | DOI | MR | Zbl
[23] R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heilderberg, 1977, xvi+496 pp. | MR | Zbl
[24] W. Fulton, Intersection theory, Ergeb. Math. Grenzgeb. (3), 2, Springer-Verlag, Berlin, 1984, xi+470 pp. | DOI | MR | MR | Zbl
[25] R. Lazarsfeld, Positivity in algebraic geometry, v. I, Ergeb. Math. Grenzgeb. (3), 48, Classical setting: line bundles and linear series, Springer-Verlag, Berlin, 2004, xviii+387 pp. | MR | Zbl
[26] G. Segal, G. Wilson, “Loop groups and equations of KdV type”, Inst. Hautes Études Sci. Publ. Math., 61:1 (1985), 5–65 | DOI | MR | Zbl
[27] A. Grothendieck, J. A. Dieudonné, “Éléments de géométrie algébrique. II”, Inst. Hautes Études Sci. Publ. Math., 1961, no. 8, 5–222 | Zbl
[28] A. N. Parshin, “Integrable systems and local fields”, Comm. Algebra, 29:9 (2001), 4157–4181 | DOI | MR | Zbl
[29] D. Huybrechts, M. Lehn, The geometry of moduli spaces of sheaves, Cambridge Math. Lib., 2nd ed., Cambridge, Cambridge Univ. Press, 2010, xviii+325 pp. | DOI | MR | Zbl
[30] A. B. Zheglov, D. V. Osipov, “On some questions related to the Krichever correspondence”, Math. Notes, 81:4 (2007), 467–476 | DOI | DOI | MR | Zbl
[31] M. Mulase, “Algebraic theory of the KP equations”, Perspectives in mathematical physics, Conf. Proc. Lecture Notes Math. Phys., III, Int. Press, Cambridge, MA, 1994, 151–217 | MR | Zbl
[32] A. N. Parshin, “The Krichever correspondence for algebraic surfaces”, Funct. Anal. Appl., 35:1 (2001), 74–76 | DOI | DOI | MR | Zbl
[33] D. V. Osipov, “The Krichever correspondence for algebraic varieties”, Izv. Math., 65:5 (2001), 941–975 | DOI | DOI | MR | Zbl
[34] H. Kurke, D. Osipov, A. Zheglov, “Formal punctured ribbons and two-dimensional local fields”, J. Reine Angew. Math., 2009:629 (2009), 133–170 | DOI | MR | Zbl
[35] M. Mulase, “Category of vector bundles on algebraic curves and infinite dimensional Grassmanians”, Internat. J. Math., 1:3 (1990), 293–342 | DOI | MR | Zbl
[36] W. Bruns, J. Herzog, Cohen–Macaulay rings, Cambridge Stud. Adv. Math., 39, 2nd rev. ed., Cambridge Univ. Press, Cambridge, 1998, xii+453 pp. | DOI | MR | Zbl
[37] C. J. Rego, “The compactified Jacobian”, Ann. Sci. École Norm. Sup. (4), 13:2 (1980), 211–223 | MR | Zbl
[38] N. Bourbaki, Éléments de mathématique. Algèbre commutative, Fasc. 27, 28, 30, 31, Actualites Sci. Indust., 1290, 1293, 1308, 1314, Hermann, Paris, 1961–1965, 187 pp., 183 pp., 207 pp., iii+146 pp. | MR | MR | MR | MR | MR | Zbl | Zbl
[39] L. Bădescu, Projective geometry and formal geometry, IMPAN Monogr. Mat. (N. S.), 65, Birkhäuser Verlag, Basel, 2004, xiv+209 pp. | DOI | MR | Zbl