Geometric properties of commutative subalgebras of partial differential operators
Sbornik. Mathematics, Tome 206 (2015) no. 5, pp. 676-717 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate further algebro-geometric properties of commutative rings of partial differential operators, continuing our research started in previous articles. In particular, we start to explore the simplest and also certain known examples of quantum algebraically completely integrable systems from the point of view of a recent generalization of Sato's theory, developed by the first author. We give a complete characterization of the spectral data for a class of ‘trivial’ commutative algebras and strengthen geometric properties known earlier for a class of known examples. We also define a kind of restriction map from the moduli space of coherent sheaves with fixed Hilbert polynomial on a surface to an analogous moduli space on a divisor (both the surface and the divisor are part of the spectral data). We give several explicit examples of spectral data and corresponding algebras of commuting (completed) operators, producing as a by-product interesting examples of surfaces that are not isomorphic to spectral surfaces of any (maximal) commutative ring of partial differential operators of rank one. Finally, we prove that any commutative ring of partial differential operators whose normalization is isomorphic to the ring of polynomials $k[u,t]$ is a Darboux transformation of a ring of operators with constant coefficients. Bibliography: 39 titles.
Keywords: commuting differential operators, quantum integrable systems, moduli space of coherent sheaves
Mots-clés : Darboux transformation.
@article{SM_2015_206_5_a3,
     author = {A. B. Zheglov and H. Kurke},
     title = {Geometric properties of commutative subalgebras of partial differential operators},
     journal = {Sbornik. Mathematics},
     pages = {676--717},
     year = {2015},
     volume = {206},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_5_a3/}
}
TY  - JOUR
AU  - A. B. Zheglov
AU  - H. Kurke
TI  - Geometric properties of commutative subalgebras of partial differential operators
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 676
EP  - 717
VL  - 206
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_5_a3/
LA  - en
ID  - SM_2015_206_5_a3
ER  - 
%0 Journal Article
%A A. B. Zheglov
%A H. Kurke
%T Geometric properties of commutative subalgebras of partial differential operators
%J Sbornik. Mathematics
%D 2015
%P 676-717
%V 206
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2015_206_5_a3/
%G en
%F SM_2015_206_5_a3
A. B. Zheglov; H. Kurke. Geometric properties of commutative subalgebras of partial differential operators. Sbornik. Mathematics, Tome 206 (2015) no. 5, pp. 676-717. http://geodesic.mathdoc.fr/item/SM_2015_206_5_a3/

[1] A. B. Zheglov, “On rings of commuting partial differential operators”, St. Petersburg Math. J., 25:5 (2014), 775–814 | DOI | MR | Zbl

[2] H. Kurke, D. Osipov, A. Zheglov, “Commuting differential operators and higher-dimensional algebraic varieties”, Selecta Math. (N.S.), 20:4 (2014), 1159–1195 | DOI | MR | Zbl

[3] A. Braverman, P. Etingof, D. Gaitsgory, “Quantum integrable systems and differential Galois theory”, Transform. Groups, 2:1 (1997), 31–56 | DOI | MR | Zbl

[4] I. M. Krichever, “Commutative rings of ordinary linear differential operators”, Funct. Anal. Appl., 12:3 (1978), 175–185 | DOI | MR | Zbl

[5] I. M. Krichever, “Methods of algebraic geometry in the theory of non-linear equations”, Russian Math. Surveys, 32:6 (1977), 185–213 | DOI | MR | Zbl

[6] O. A. Chalykh, A. P. Veselov, “Commutative rings of partial differential operators and Lie algebras”, Comm. Math. Phys., 126:3 (1990), 597–611 | DOI | MR | Zbl

[7] O. A. Chalykh, A. P. Veselov, “Integrability in the theory of the Schrödinger operator and harmonic analysis”, Comm. Math. Phys., 152:1 (1993), 29–40 | DOI | MR | Zbl

[8] A. P. Veselov, K. L. Styrkas, O. A. Chalykh, “Algebraic integrability for the Schrödinger equation and finite reflection groups”, Theoret. and Math. Phys., 94:2 (1993), 182–197 | DOI | MR | Zbl

[9] M. A. Olshanetsky, A. M. Perelomov, “Quantum integrable systems related to Lie algebras”, Phys. Rep., 94:6 (1983), 313–404 | DOI | MR

[10] M. Feigin, A. P. Veselov, “Quasi-invariants of Coxeter groups and $m$-harmonic polynomials”, Int. Math. Res. Not., 2002:10 (2002), 521–545 | DOI | MR | Zbl

[11] M. Feigin, A. P. Veselov, “Quasi-invariants and quantum integrals of the deformed Calogero–Moser systems”, Int. Math. Res. Not., 2003:46 (2003), 2487–2511 | DOI | MR | Zbl

[12] P. Etingof, V. A. Ginzburg, “On $m$-quasi-invariants of a Coxeter group”, Mosc. Math. J., 2:3 (2002), 555–566 | MR | Zbl

[13] O. Chalykh, “Algebro-geometric Schrödinger operators in many dimensions”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 366:1867 (2008), 947–971 | DOI | MR | Zbl

[14] Yu. Berest, P. Etingof, V. Ginzburg, “Cherednik algebras and differential operators on quasi-invariants”, Duke Math. J., 118:2 (2003), 279–337 | DOI | MR | Zbl

[15] Yu. Berest, A. Kasman, “$\mathscr D$-modules and Darboux transformations”, Lett. Math. Phys., 43:3 (1998), 279–294 | DOI | MR | Zbl

[16] A. Nakayashiki, “Commuting partial differential operators and vector bundles over Abelian varieties”, Amer. J. Math., 116:1 (1994), 65–100 | DOI | MR | Zbl

[17] A. E. Mironov, “Commutative rings of differential operators corresponding to multidimensional algebraic varieties”, Siberian Math. J., 43:5 (2002), 888–898 | DOI | MR | Zbl

[18] A. N. Parshin, “On a ring of formal pseudodifferential operators”, Proc. Steklov Inst. Math., 224 (1999), 266–280 | MR | Zbl

[19] A. B. Zheglov, Two dimensional KP systems and their solvability, 2005, 43 pp., arXiv: math-ph/0503067

[20] H. Kurke, D. V. Osipov, A. B. Zheglov, “Formal groups arising from formal punctured ribbons”, Internat. J. Math., 21:6 (2010), 755–797 | DOI | MR | Zbl

[21] J. A. Morrow, “Minimal normal compactifications of $\mathbb{C}^2$”, Complex analysis, 1972 (Proc. Conf., Rice Univ., Houston, Tex., 1972), Vol. I: Geometry of singularities, Rice Univ. Studies, 59:1 (1973), 97–112 | MR | Zbl

[22] H. Kojima, T. Takahashi, “Notes on minimal compactifications of the affine plane”, Ann. Mat. Pura Appl. (4), 188:1 (2009), 153–169 | DOI | MR | Zbl

[23] R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heilderberg, 1977, xvi+496 pp. | MR | Zbl

[24] W. Fulton, Intersection theory, Ergeb. Math. Grenzgeb. (3), 2, Springer-Verlag, Berlin, 1984, xi+470 pp. | DOI | MR | MR | Zbl

[25] R. Lazarsfeld, Positivity in algebraic geometry, v. I, Ergeb. Math. Grenzgeb. (3), 48, Classical setting: line bundles and linear series, Springer-Verlag, Berlin, 2004, xviii+387 pp. | MR | Zbl

[26] G. Segal, G. Wilson, “Loop groups and equations of KdV type”, Inst. Hautes Études Sci. Publ. Math., 61:1 (1985), 5–65 | DOI | MR | Zbl

[27] A. Grothendieck, J. A. Dieudonné, “Éléments de géométrie algébrique. II”, Inst. Hautes Études Sci. Publ. Math., 1961, no. 8, 5–222 | Zbl

[28] A. N. Parshin, “Integrable systems and local fields”, Comm. Algebra, 29:9 (2001), 4157–4181 | DOI | MR | Zbl

[29] D. Huybrechts, M. Lehn, The geometry of moduli spaces of sheaves, Cambridge Math. Lib., 2nd ed., Cambridge, Cambridge Univ. Press, 2010, xviii+325 pp. | DOI | MR | Zbl

[30] A. B. Zheglov, D. V. Osipov, “On some questions related to the Krichever correspondence”, Math. Notes, 81:4 (2007), 467–476 | DOI | DOI | MR | Zbl

[31] M. Mulase, “Algebraic theory of the KP equations”, Perspectives in mathematical physics, Conf. Proc. Lecture Notes Math. Phys., III, Int. Press, Cambridge, MA, 1994, 151–217 | MR | Zbl

[32] A. N. Parshin, “The Krichever correspondence for algebraic surfaces”, Funct. Anal. Appl., 35:1 (2001), 74–76 | DOI | DOI | MR | Zbl

[33] D. V. Osipov, “The Krichever correspondence for algebraic varieties”, Izv. Math., 65:5 (2001), 941–975 | DOI | DOI | MR | Zbl

[34] H. Kurke, D. Osipov, A. Zheglov, “Formal punctured ribbons and two-dimensional local fields”, J. Reine Angew. Math., 2009:629 (2009), 133–170 | DOI | MR | Zbl

[35] M. Mulase, “Category of vector bundles on algebraic curves and infinite dimensional Grassmanians”, Internat. J. Math., 1:3 (1990), 293–342 | DOI | MR | Zbl

[36] W. Bruns, J. Herzog, Cohen–Macaulay rings, Cambridge Stud. Adv. Math., 39, 2nd rev. ed., Cambridge Univ. Press, Cambridge, 1998, xii+453 pp. | DOI | MR | Zbl

[37] C. J. Rego, “The compactified Jacobian”, Ann. Sci. École Norm. Sup. (4), 13:2 (1980), 211–223 | MR | Zbl

[38] N. Bourbaki, Éléments de mathématique. Algèbre commutative, Fasc. 27, 28, 30, 31, Actualites Sci. Indust., 1290, 1293, 1308, 1314, Hermann, Paris, 1961–1965, 187 pp., 183 pp., 207 pp., iii+146 pp. | MR | MR | MR | MR | MR | Zbl | Zbl

[39] L. Bădescu, Projective geometry and formal geometry, IMPAN Monogr. Mat. (N. S.), 65, Birkhäuser Verlag, Basel, 2004, xiv+209 pp. | DOI | MR | Zbl