Multidimensional smooth loops with universal elasticity
Sbornik. Mathematics, Tome 206 (2015) no. 5, pp. 650-675 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\widetilde E$ be a universal (isotopically invariant) identity that is derived from the elasticity identity $E\colon (xy)x=x(yx)$. One of the authors has previously shown that a) each local loop of dimension $r$ with identity $\widetilde E$ (briefly, a loop $\widetilde E$) is a smooth middle Bol loop of dimension $r$; b) smooth two-dimensional loops $\widetilde E$ are Lie groups; c) up to isotopy, there exist only two three-dimensional loops $\widetilde E$: the loops $E_1$ and $E_2$. In this paper, the loops $E_1$ and $E_2$ are extended to the multidimensional case. The fact that each smooth loop $\widetilde E$ of dimension $r$ corresponds to a unique multidimensional three-web on a manifold of dimension $2r$ is key to our work. In addition, the class of loops under investigation is characterized by the fact that the torsion tensor of the corresponding web has rank 1 (that is, the algebra generated by this tensor has a one-dimensional derived algebra). This enables us to express the differential equations of the problem in an invariant form. The system of equations thus obtained was found to be amenable to integration in the most general case, and the equations of the required loops have been obtained in local coordinates. Bibliography: 17 titles.
Keywords: loop, elasticity identity, universal identity, Bol three-web, elastic three-web.
@article{SM_2015_206_5_a2,
     author = {K. R. Dzhukashev and A. M. Shelekhov},
     title = {Multidimensional smooth loops with universal elasticity},
     journal = {Sbornik. Mathematics},
     pages = {650--675},
     year = {2015},
     volume = {206},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_5_a2/}
}
TY  - JOUR
AU  - K. R. Dzhukashev
AU  - A. M. Shelekhov
TI  - Multidimensional smooth loops with universal elasticity
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 650
EP  - 675
VL  - 206
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_5_a2/
LA  - en
ID  - SM_2015_206_5_a2
ER  - 
%0 Journal Article
%A K. R. Dzhukashev
%A A. M. Shelekhov
%T Multidimensional smooth loops with universal elasticity
%J Sbornik. Mathematics
%D 2015
%P 650-675
%V 206
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2015_206_5_a2/
%G en
%F SM_2015_206_5_a2
K. R. Dzhukashev; A. M. Shelekhov. Multidimensional smooth loops with universal elasticity. Sbornik. Mathematics, Tome 206 (2015) no. 5, pp. 650-675. http://geodesic.mathdoc.fr/item/SM_2015_206_5_a2/

[1] R. Moufang, “Zur Struktur von Alternativkörpern”, Math. Ann., 110:1 (1935), 416–430 | DOI | MR | Zbl

[2] A. I. Maltsev, “Analiticheskie lupy”, Matem. sb., 36(78):3 (1955), 569–576 | MR | Zbl

[3] A. I. Nesterov, “Kvazigruppovye idei v fizike”, Kvazigruppy i neassotsiativnye algebry v fizike, Tr. Instituta fiziki, 66, Tartu, 1990, 107–120 | MR | Zbl

[4] G. Bol, “Gewebe und Gruppen”, Math. Ann, 114:1 (1937), 414–431 | DOI | MR | Zbl

[5] L. V. Sabinin, P. O. Mikheev, Teoriya gladkikh lup Bola, Un-t druzhby narodov, M., 1985, 80 pp. | MR | Zbl

[6] V. D. Belousov, Osnovy teorii kvazigrupp i lup, Nauka, M., 1967, 223 pp. | MR | Zbl

[7] A. M. Shelekhov, “Analytic solutions of the functional equation $(xy)x=x(yx)$”, Math. Notes, 50:4 (1991), 1073–1078 | DOI | MR | Zbl

[8] A. M. Shelekhov, O tpi-tkanyakh s elastichnymi koopdinatnymi lupami, dep. v VINITI 02.12.1987, No 8465-V87, Kalininskii gos. un-t, Kalinin, 1987

[9] A. M. Shelekhov, “The isotopically invariant loop variety lying between Moufang loops variety and Bol loops variety”, Proc. of the 3rd Congress of Geometry (Thessaloniki, 1991), Aristotle Univ. Thessaloniki, Thessaloniki, 1992, 376–384 | MR | Zbl

[10] P. N. Syrbu, “Loops with universal elasticity”, Quasigroups Related Systems, 1:1 (1994), 57–65 | MR | Zbl

[11] P. N. Syrbu, “On loops with universal elasticity”, Quasigroups Related Systems, 3 (1996), 41–54 | MR | Zbl

[12] M. V. Antipova, “O tkanyakh Bola s pochti nulevym tenzorom krivizny”, Izv. PGPU im. V. G. Belinskogo, no. 26, Penza, 2011, 28–34

[13] M. V. Antipova, “Ob odnom prilozhenii teorii mnogomernykh tri-tkanei”, Vestn. Tverskogo gos. un-ta. Ser. Prikladnaya matematika, 2012, no. 32, 81–89

[14] M. A. Akivis, A. M. Shelekhov, Mnogomernye tri-tkani i ikh prilozheniya, Tver, Tverskoi gos. un-t, 2010, 307 pp.

[15] M. A. Akivis, A. M. Shelekhov, Geometry and algebra of multidimensional three-webs, Math. Appl. (Soviet Ser.), 82, Kluwer Acad. Publ., Dordrecht, 1992, xviii+358 pp. | DOI | MR | Zbl

[16] M. A. Akivis, “O tri-tkanyakh mnogomernykh poverkhnostei”, Tr. Geom. semin., 2, VINITI, M., 1969, 7–31 | MR | Zbl

[17] G. A. Balandina, “On general theory of elastic webs”, Webs and Quasigroups, Tver State University, Tver, 1995, 62–74 | MR | Zbl