On the general solution of the problem of the motion of a heavy rigid body in the Hess case
Sbornik. Mathematics, Tome 206 (2015) no. 5, pp. 621-649 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A solution of the Euler-Poisson equations in the Hess case is represented in the form of the family of its singular points together with the asymptotic behaviour of the solution at these points. A complete list of single-valued and finite-valued solutions in the Hess case is given. A representation for limiting periodic solutions is obtained and a precise condition for the existence of these solutions is found. Bibliography: 25 titles.
Keywords: first integral, asymptotic behaviour of solutions, singular points of solutions, analytic functions.
Mots-clés : Hess case of the Euler-Poisson equations
@article{SM_2015_206_5_a1,
     author = {A. V. Belyaev},
     title = {On the general solution of the problem of the motion of a~heavy rigid body in the {Hess} case},
     journal = {Sbornik. Mathematics},
     pages = {621--649},
     year = {2015},
     volume = {206},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_5_a1/}
}
TY  - JOUR
AU  - A. V. Belyaev
TI  - On the general solution of the problem of the motion of a heavy rigid body in the Hess case
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 621
EP  - 649
VL  - 206
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_5_a1/
LA  - en
ID  - SM_2015_206_5_a1
ER  - 
%0 Journal Article
%A A. V. Belyaev
%T On the general solution of the problem of the motion of a heavy rigid body in the Hess case
%J Sbornik. Mathematics
%D 2015
%P 621-649
%V 206
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2015_206_5_a1/
%G en
%F SM_2015_206_5_a1
A. V. Belyaev. On the general solution of the problem of the motion of a heavy rigid body in the Hess case. Sbornik. Mathematics, Tome 206 (2015) no. 5, pp. 621-649. http://geodesic.mathdoc.fr/item/SM_2015_206_5_a1/

[1] W. Hess, “Ueber die Euler'schen Bewegungsgleichungen und über eine neue partikuläre Lösung des Problems der Bewegung eines starren Körpers um einen festen Punkt”, Math. Ann., 37:2 (1890), 153–181 | DOI | MR | Zbl

[2] N. E. Zhukovskii, “Loksodromicheskii mayatnik Gessa”, Trudy otd. fiz. nauk ob-va lyubit. estestvoznaniya, 5:2 (1893), 37–45

[3] B. K. Mlodzeevskii, P. A. Nekrasov, “Ob usloviyakh suschestvovaniya asimptoticheskikh periodicheskikh dvizhenii v zadache Gessa”, Trudy otd. fiz. nauk ob-va lyubit. estestvoznaniya, 6:1 (1893), 43–52

[4] P. A. Nekrasov, “Analiticheskoe issledovanie odnogo sluchaya dvizheniya tyazhelogo tverdogo tela okolo nepodvizhnoi tochki”, Matem. sb., 18:2 (1896), 161–274

[5] G. G. Appelrot, “Po povodu § 1 memuara S. V. Kovalevskoi «Sur le problème de la rotation d'un corps solide autour d'un point fixe»”, Matem. sb., 16:3 (1892), 483–507 | Zbl

[6] S. V. Kovalevskaya, Nauchnye raboty, Izd-vo AN SSSR, M., 1948, 368 pp. | MR | Zbl

[7] P. A. Nekrasov, “K zadache o dvizhenii tyazhelogo tverdogo tela okolo nepodvizhnoi tochki”, Matem. sb., 16:3 (1892), 508–517 | Zbl

[8] S. Novikov, S. V. Manakov, L. P. Pitaevskii, V. E. Zakharov, Theory of solitons. The inverse scattering method, Contemp. Soviet Math., Consultants Bureau [Plenum], New York, 1984, xi+276 pp. | MR | MR | Zbl | Zbl

[9] S. V. Manakov, “Note on the integration of Euler's equations of the dynamics of an $n$-dimensional rigid body”, Funct. Anal. Appl., 10:4 (1976), 328–329 | DOI | MR | Zbl

[10] A. S. Mishchenko, A. T. Fomenko, “Euler equations on finite-dimensional Lie groups”, Math. USSR-Izv., 12:2 (1978), 371–389 | DOI | MR | Zbl

[11] M. Adler, P. van Moerbeke, “Completely integrable systems, Euclidean Lie algebras, and curves”, Adv. in Math., 38:3 (1980), 267–317 | DOI | MR | Zbl

[12] M. Adler, P. van Moerbeke, “Linearization of Hamiltonian system, Jacobi varieties, and represetation theory”, Adv. in Math., 38:3 (1980), 318–379 | DOI | MR | Zbl

[13] V. Dragović, B. Gagić, “An L–A pair for the Hess–Apel'rot system and a new integrable case for the Euler–Poisson equations on $so(4)\times so(4)$”, Proc. Roy. Soc. Edinburgh Sect. A, 131:4 (2001), 845–855 | DOI | MR | Zbl

[14] P. Lubowiecki, H. Żoła̧dek, “The Hess–Appelrot system. I. Invariant torus and its normal hyperbolicity”, J. Geom. Mech., 4:4 (2012), 443–467 | MR | Zbl

[15] P. Lubowiecki, H. Żoła̧dek, “The Hess–Appelrot system. II. Perturbation and limit cycles”, J. Differential Equations, 252:2 (2012), 1701–1722 | DOI | MR | Zbl

[16] V. I. Arnold, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, Springer-Verlag, New York, 1978, xvi+462 pp. | MR | MR | Zbl | Zbl

[17] A. V. Belyaev, “Analytic properties of solutions of the Euler–Poisson equations in the Hess case”, Ukr. Math. Bull., 2:3, 301–321 | MR | Zbl

[18] A. Hurwitz, Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen, Herausgegeben und ergänzt durch einen Abschnitt über geometrische Funktionentheorie von R. Courant. Mit einem Anhang von H. Röhrl, Grundlehren Math. Wiss., 3, 4. Aufl., Springer-Verlag, Berlin–New York, 1964, xiii+706 pp. | MR | MR | Zbl | Zbl

[19] B. M. Levitan, V. V. Zhikov, Almost periodic functions and differential equations, Cambridge Univ. Press, Cambridge–New York, 1982, xi+211 pp. | MR | MR | Zbl | Zbl

[20] A. V. Belyaev, “Asymptotic behaviour of singular points of solutions of the problem of heavy $n$-dimensional body motion in the Lagrange case”, Sb. Math., 202:11 (2011), 1617–1635 | DOI | DOI | MR | Zbl

[21] A. V. Belyaev, “On the full list of finite-valued solutions of the Euler–Poisson equations having four first integrals”, Math. Nachr., 285:10 (2012), 1199–1229 | DOI | MR | Zbl

[22] A. I. Dokshevich, Resheniya v konechnom vide uravnenii Eilera–Puassona, Naukova dumka, Kiev, 1992, 168 pp. | MR

[23] A. M. Lyapunov, “Ob odnom svoistve differentsialnykh uravnenii zadachi o dvizhenii tyazhelogo tverdogo tela, imeyuschego nepodvizhnuyu tochku”, Soobsch. Kharkovsk. matem. ob-va, 2 ser., 4 (1894), 123–140 | Zbl

[24] Yu. A. Arkhangelskii, Analiticheskaya dinamika tverdogo tela, Nauka, M., 1977, 328 pp. | MR

[25] I. Tamura, Yōsō no toporojī (Topology of foliations), Sugaku Sensho, Iwanami Shoten, Tokyo, 1976, 238 pp. | MR | MR | Zbl | Zbl