Approximation properties of Fejér- and de la Valleé-Poussin-type means for partial sums of a special series in the system $\{\sin x\sin kx\}_{k=1}^\infty$
Sbornik. Mathematics, Tome 206 (2015) no. 4, pp. 600-617 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is concerned with series of the form $$ \Phi(\theta)=A_\Phi(\theta)+\sin\theta\sum_{k=1}^\infty\varphi_k\sin k\theta, $$ where $\Phi(\theta)$ is an even $2\pi$-periodic function with finite values $\Phi(0)$ and $\Phi(\pi)$, \begin{gather*} A_\Phi(\theta)=\frac{\Phi(0)+\Phi(\pi)}{2}+\frac{\Phi(0)-\Phi(\pi)}{2}\cos\theta, \qquad \varphi(\theta)=\Phi(\theta)-A_\Phi(\theta), \\ \varphi_k=\frac{2}{\pi}\int_0^\pi\varphi(t)\frac{\sin kt}{\sin t}\,dt. \end{gather*} Series of this type appear as a particular case of more general special series in ultraspherical Jacobi polynomials, which were first introduced and studied by the author. Partial sums of the form $\Pi_n(\Phi)=\Pi_n(\Phi,\theta) =A_\Phi(\theta)+\sin\theta\sum_{k=1}^{n-1}\varphi_k\sin k\theta$ are shown to have a number of important properties, which give them an advantage over trigonometric Fourier sums of the form $S_n(\Phi,\theta)=\frac{a_0}{2}+\sum_{k=1}^na_k\cos k\theta$. Approximation properties of Fejér- and de la Valleé-Poussin-type means for the partial sums $\Pi_n(\Phi,\theta)$ are studied. Bibliography: 7 titles.
Keywords: special series in the system $\{\sin x\sin kx\}_{k=1}^\infty$, de la Valleé-Poussin means, approximation properties.
Mots-clés : Fejér means
@article{SM_2015_206_4_a5,
     author = {I. I. Sharapudinov},
     title = {Approximation properties of {Fej\'er-} and {de~la~Valle\'e-Poussin-type} means for partial sums of a~special series in the system $\{\sin x\sin kx\}_{k=1}^\infty$},
     journal = {Sbornik. Mathematics},
     pages = {600--617},
     year = {2015},
     volume = {206},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_4_a5/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - Approximation properties of Fejér- and de la Valleé-Poussin-type means for partial sums of a special series in the system $\{\sin x\sin kx\}_{k=1}^\infty$
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 600
EP  - 617
VL  - 206
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_4_a5/
LA  - en
ID  - SM_2015_206_4_a5
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T Approximation properties of Fejér- and de la Valleé-Poussin-type means for partial sums of a special series in the system $\{\sin x\sin kx\}_{k=1}^\infty$
%J Sbornik. Mathematics
%D 2015
%P 600-617
%V 206
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2015_206_4_a5/
%G en
%F SM_2015_206_4_a5
I. I. Sharapudinov. Approximation properties of Fejér- and de la Valleé-Poussin-type means for partial sums of a special series in the system $\{\sin x\sin kx\}_{k=1}^\infty$. Sbornik. Mathematics, Tome 206 (2015) no. 4, pp. 600-617. http://geodesic.mathdoc.fr/item/SM_2015_206_4_a5/

[1] I. I. Sharapudinov, “Limit ultraspherical series and their approximation properties”, Math. Notes, 94:2 (2013), 281–293 | DOI | DOI | MR | Zbl

[2] I. I. Sharapudinov, “Some special series in ultraspherical polynomials and their approximation properties”, Izv. Math., 78:5 (2014), 1036–1059 | DOI | DOI | Zbl

[3] F. F. Dedus, S. A. Makhortykh, M. N. Ustinin, A. F. Dedus, Obobschennyi spektralno-analiticheskii metod obrabotki informatsionnykh massivov. Zadachi analiza izobrazhenii i raspoznavaniya obrazov, Mashinostroenie, M., 1999, 356 pp.

[4] L. N. Trefethen, Spectral methods in Matlab, Software Environ. Tools, 10, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000, xviii+165 pp. | DOI | MR | Zbl

[5] L. N. Trefethen, Finite difference and spectral methods for ordinary and partial differential equation, Cornell University, Ithaca, NY, 1996, 300 pp.

[6] R. Mukundan, K. R. Ramakrishnan, Moment functions in image analysis. Theory and applications, World Scientific Publishing Co., Inc., River Edge, NJ, 1998, xiv+150 pp. | MR | Zbl

[7] H. S. Malvar, Signal processing with lapped transform, Artech House, Boston, MA, 1992, xvi+357 pp. | Zbl