Mots-clés : Fejér means
@article{SM_2015_206_4_a5,
author = {I. I. Sharapudinov},
title = {Approximation properties of {Fej\'er-} and {de~la~Valle\'e-Poussin-type} means for partial sums of a~special series in the system $\{\sin x\sin kx\}_{k=1}^\infty$},
journal = {Sbornik. Mathematics},
pages = {600--617},
year = {2015},
volume = {206},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_4_a5/}
}
TY - JOUR
AU - I. I. Sharapudinov
TI - Approximation properties of Fejér- and de la Valleé-Poussin-type means for partial sums of a special series in the system $\{\sin x\sin kx\}_{k=1}^\infty$
JO - Sbornik. Mathematics
PY - 2015
SP - 600
EP - 617
VL - 206
IS - 4
UR - http://geodesic.mathdoc.fr/item/SM_2015_206_4_a5/
LA - en
ID - SM_2015_206_4_a5
ER -
%0 Journal Article
%A I. I. Sharapudinov
%T Approximation properties of Fejér- and de la Valleé-Poussin-type means for partial sums of a special series in the system $\{\sin x\sin kx\}_{k=1}^\infty$
%J Sbornik. Mathematics
%D 2015
%P 600-617
%V 206
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2015_206_4_a5/
%G en
%F SM_2015_206_4_a5
I. I. Sharapudinov. Approximation properties of Fejér- and de la Valleé-Poussin-type means for partial sums of a special series in the system $\{\sin x\sin kx\}_{k=1}^\infty$. Sbornik. Mathematics, Tome 206 (2015) no. 4, pp. 600-617. http://geodesic.mathdoc.fr/item/SM_2015_206_4_a5/
[1] I. I. Sharapudinov, “Limit ultraspherical series and their approximation properties”, Math. Notes, 94:2 (2013), 281–293 | DOI | DOI | MR | Zbl
[2] I. I. Sharapudinov, “Some special series in ultraspherical polynomials and their approximation properties”, Izv. Math., 78:5 (2014), 1036–1059 | DOI | DOI | Zbl
[3] F. F. Dedus, S. A. Makhortykh, M. N. Ustinin, A. F. Dedus, Obobschennyi spektralno-analiticheskii metod obrabotki informatsionnykh massivov. Zadachi analiza izobrazhenii i raspoznavaniya obrazov, Mashinostroenie, M., 1999, 356 pp.
[4] L. N. Trefethen, Spectral methods in Matlab, Software Environ. Tools, 10, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000, xviii+165 pp. | DOI | MR | Zbl
[5] L. N. Trefethen, Finite difference and spectral methods for ordinary and partial differential equation, Cornell University, Ithaca, NY, 1996, 300 pp.
[6] R. Mukundan, K. R. Ramakrishnan, Moment functions in image analysis. Theory and applications, World Scientific Publishing Co., Inc., River Edge, NJ, 1998, xiv+150 pp. | MR | Zbl
[7] H. S. Malvar, Signal processing with lapped transform, Artech House, Boston, MA, 1992, xvi+357 pp. | Zbl