Mixing and eigenfunctions of singular hyperbolic attractors
Sbornik. Mathematics, Tome 206 (2015) no. 4, pp. 572-599 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is concerned with investigating singular hyperbolic flows. It is shown that an eigenfunction cannot be continuous on an ergodic component containing a fixed point. However, it is continuous on a certain set (after a modification on a nullset). The following alternative is established: either there exists an eigenfunction on an ergodic component or the flow is mixing on this component. Sufficient conditions for mixing are given. Bibliography: 28 titles.
Keywords: singular hyperbolic attractor, invariant measure, mixing, eigenfunction.
@article{SM_2015_206_4_a4,
     author = {E. A. Sataev},
     title = {Mixing and eigenfunctions of singular hyperbolic attractors},
     journal = {Sbornik. Mathematics},
     pages = {572--599},
     year = {2015},
     volume = {206},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_4_a4/}
}
TY  - JOUR
AU  - E. A. Sataev
TI  - Mixing and eigenfunctions of singular hyperbolic attractors
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 572
EP  - 599
VL  - 206
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_4_a4/
LA  - en
ID  - SM_2015_206_4_a4
ER  - 
%0 Journal Article
%A E. A. Sataev
%T Mixing and eigenfunctions of singular hyperbolic attractors
%J Sbornik. Mathematics
%D 2015
%P 572-599
%V 206
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2015_206_4_a4/
%G en
%F SM_2015_206_4_a4
E. A. Sataev. Mixing and eigenfunctions of singular hyperbolic attractors. Sbornik. Mathematics, Tome 206 (2015) no. 4, pp. 572-599. http://geodesic.mathdoc.fr/item/SM_2015_206_4_a4/

[1] C. A. Morales, M. J. Pacífico, E. R. Pujals, “On $C^1$ robust singular transitive sets for three-dimensional flows”, C. R. Acad. Sci. Paris Sér. I Math., 326:1 (1998), 81–86 | DOI | MR | Zbl

[2] C. A. Morales, M. J. Pacifico, E. R. Pujals, “Singular hyperbolic systems”, Proc. Amer. Math. Soc., 127:11 (1999), 3393–3401 | DOI | MR | Zbl

[3] E. N. Lorenz, “Deterministic nonperiodic flow”, J. Atmos. Sci., 20:2 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[4] V. S. Afraimovich, V. V. Bykov, L. P. Shilnikov, “O prityagivayuschikh negrubykh predelnykh mnozhestvakh tipa attraktora Lorentsa”, Tr. MMO, 44, Izd-vo Mosk. un-ta, M., 1982, 150–212 | MR | Zbl

[5] D. V. Turaev, L. P. Shilnikov, “An example of a wild strange attractor”, Sb. Math., 189:2 (1998), 291–314 | DOI | DOI | MR | Zbl

[6] L. Shilnikov, Bifurcations and strange attractors, arXiv: math/0304457

[7] S. Bautista, C. Morales, “A sectional-Anosov connecting lemma”, Ergodic Theory Dynam. Systems, 30:2 (2010), 339–359 | DOI | MR | Zbl

[8] S. Bautista, C. A. Morales, “Existence of periodic orbits for singular-hyperbolic sets”, Mosc. Math. J., 6:2 (2006), 265–297 | MR | Zbl

[9] S. Bautista, C. Morales, M. J. Pacifico, “On the intersection of homoclinic classes on singular-hyperbolic sets”, Discrete Contin. Dyn. Syst., 19:4 (2007), 761–775 | DOI | MR | Zbl

[10] A. Arroyo, E. R. Pujals, “Dynamical properties of singular-hyperbolic attractors”, Discrete Contin. Dyn. Syst., 19:1 (2007), 67–87 | DOI | MR | Zbl

[11] C. A. Morales, “Strong stable manifolds for sectional-hyperbolic sets”, Discrete Contin. Dyn. Syst., 17:3 (2007), 553–560 | DOI | MR | Zbl

[12] C. A. Morales, “Example of singular-hyperbolic attracting sets”, Dyn. Syst., 22:3 (2007), 339–349 | DOI | MR | Zbl

[13] C. A. Morales, M. J. Pacífico, “A spectral decomposition for singular-hyperbolic sets”, Pacific J. Math., 229:1 (2007), 223–232 | DOI | MR | Zbl

[14] C. A. Morales, M. J. Pacifico, “Sufficient conditions for robustness of attractors”, Pacific J. Math., 216:2 (2004), 327–342 | DOI | MR | Zbl

[15] C. A. Morales, “Sectional-Anosov flows”, Monatsh. Math., 159:3 (2010), 253–260 | DOI | MR | Zbl

[16] E. A. Sataev, “Some properties of singular hyperbolic attractors”, Sb. Math., 200:1 (2009), 35–76 | DOI | DOI | MR | Zbl

[17] E. A. Sataev, “Invariant measures for singular hyperbolic attractors”, Sb. Math., 201:3 (2010), 419–470 | DOI | DOI | MR | Zbl

[18] V. Araujo, M. J. Pacifico, E. R. Pujals, M. Viana, “Singular-hyperbolic attractors are chaotic”, Trans. Amer. Math. Soc, 361:5 (2009), 2431–2485 | DOI | MR | Zbl

[19] S. Luzzatto, I. Melbourne, F. Paccaut, “The Lorenz attractor is mixing”, Comm. Math Phys., 260:2 (2005), 393–401 | DOI | MR | Zbl

[20] M. Holland, I. Melbourn, “Central limit theorems and invariance principles for Lorenz attractors”, J. Lond. Math. Soc. (2), 76:2 (2007), 345–364 | DOI | MR | Zbl

[21] M. W. Hirsh, C. C. Pugh, M. Shub, Invariant manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin–New York, 1977, ii+149 pp. | MR | Zbl

[22] D. V. Anosov, “Geodesic flows on closed Riemannian manifolds with negative curvature”, Proc. Steklov Inst. Math., 90 (1967), 1–235 | MR | Zbl

[23] Ya. G. Sinai, “Markov partitions and $C$-diffeomorphisms”, Funct. Anal. Appl., 2:1 (1968), 61–82 | DOI | MR | Zbl

[24] Ya. G. Sinai, “Gibbs measures in ergodic theory”, Russian Math. Surveys, 27:4 (1972), 21–69 | DOI | MR | Zbl

[25] R. Bowen, Equlibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Math., 470, Springer-Verlag, Berlin–New York, 1975, i+108 pp. | MR | Zbl

[26] R. Bowen, D. Ruelle, “The ergodic theory of Axiom A flows”, Invent. Math., 29:3 (1975), 181–202 | DOI | MR | Zbl

[27] D. Ruelle, “A measure associated with Axiom-A attractors”, Amer. J. Math., 98:3 (1976), 619–654 | DOI | MR | Zbl

[28] K. Yosida, Functional analysis, Grundlehren Math. Wiss., 123, Academic Press, Inc., New York; Springer-Verlag, Berlin, 1965, xi+458 pp. | MR | Zbl | Zbl