Mixing and eigenfunctions of singular hyperbolic attractors
Sbornik. Mathematics, Tome 206 (2015) no. 4, pp. 572-599

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with investigating singular hyperbolic flows. It is shown that an eigenfunction cannot be continuous on an ergodic component containing a fixed point. However, it is continuous on a certain set (after a modification on a nullset). The following alternative is established: either there exists an eigenfunction on an ergodic component or the flow is mixing on this component. Sufficient conditions for mixing are given. Bibliography: 28 titles.
Keywords: singular hyperbolic attractor, invariant measure, mixing, eigenfunction.
@article{SM_2015_206_4_a4,
     author = {E. A. Sataev},
     title = {Mixing and eigenfunctions of singular hyperbolic attractors},
     journal = {Sbornik. Mathematics},
     pages = {572--599},
     publisher = {mathdoc},
     volume = {206},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_4_a4/}
}
TY  - JOUR
AU  - E. A. Sataev
TI  - Mixing and eigenfunctions of singular hyperbolic attractors
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 572
EP  - 599
VL  - 206
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_4_a4/
LA  - en
ID  - SM_2015_206_4_a4
ER  - 
%0 Journal Article
%A E. A. Sataev
%T Mixing and eigenfunctions of singular hyperbolic attractors
%J Sbornik. Mathematics
%D 2015
%P 572-599
%V 206
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2015_206_4_a4/
%G en
%F SM_2015_206_4_a4
E. A. Sataev. Mixing and eigenfunctions of singular hyperbolic attractors. Sbornik. Mathematics, Tome 206 (2015) no. 4, pp. 572-599. http://geodesic.mathdoc.fr/item/SM_2015_206_4_a4/