Mots-clés : soluble Lie group
@article{SM_2015_206_4_a3,
author = {M. V. Milovanov},
title = {Extension of transformation groups of compact solvmanifolds},
journal = {Sbornik. Mathematics},
pages = {540--571},
year = {2015},
volume = {206},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_4_a3/}
}
M. V. Milovanov. Extension of transformation groups of compact solvmanifolds. Sbornik. Mathematics, Tome 206 (2015) no. 4, pp. 540-571. http://geodesic.mathdoc.fr/item/SM_2015_206_4_a3/
[1] L. Auslander, “An exposition of the structure of solvmanifolds. I. Algebraic theory”, Bull. Amer. Math. Soc., 79:2 (1973), 227–261 | DOI | MR | Zbl
[2] M. V. Milovanov, “A description of solvable Lie groups with a given uniform subgroup”, Math. USSR-Sb., 41:1 (1982), 83–99 | DOI | MR | Zbl
[3] M. V. Milovanov, “O gruppakh preobrazovanii kompaktnykh solvmnogoobrazii i probleme Auslendera”, Dokl. NAN Belarusi, 54:5 (2010), 11–14 | MR | Zbl
[4] M. V. Milovanov, “Complete involutive sets of functions on the cotangent bundles of compact solvmanifolds”, Sb. Math., 198:5 (2007), 711–731 | DOI | DOI | MR | Zbl
[5] V. I. Arnold, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, Springer-Verlag, New York–Heidelberg, 1978, xvi+462 pp. | MR | MR | Zbl | Zbl
[6] S. Helgason, Differential geometry and symmetric spaces, Pure Appl. Math., XII, Academic Press, New York–London, 1962, xiv+486 pp. | MR | Zbl | Zbl
[7] R. S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc., no. 22, 1957, iii+123 pp. | MR | Zbl
[8] A. I. Maltsev, “Ob odnosvyaznosti normalnykh delitelei grupp Li”, Dokl. AN SSSR, 34:1 (1942), 12–15
[9] G. D. Mostow, “Factor spaces of solvable groups”, Ann. of Math. (2), 60:1 (1954), 1–27 | DOI | MR | Zbl
[10] L. Auslander, L. Green, F. Hahn, Flows on homogeneous spaces, Ann. of Math. Stud., 53, Princeton Univ. Press, Princeton, N.J., 1963, vii+107 pp. | MR | MR | Zbl | Zbl