Extension of transformation groups of compact solvmanifolds
Sbornik. Mathematics, Tome 206 (2015) no. 4, pp. 540-571 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We indicate a way to extend connected simply connected soluble Lie groups acting transitively and locally effectively on a given compact solvmanifold. In 1973, Auslander posed the problem of describing all groups of this kind. The results obtained here lead to the conclusion that it is unlikely that this problem has an exhaustive solution. Bibliography: 10 titles.
Keywords: compact solvmanifold, cotangent bundle.
Mots-clés : soluble Lie group
@article{SM_2015_206_4_a3,
     author = {M. V. Milovanov},
     title = {Extension of transformation groups of compact solvmanifolds},
     journal = {Sbornik. Mathematics},
     pages = {540--571},
     year = {2015},
     volume = {206},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_4_a3/}
}
TY  - JOUR
AU  - M. V. Milovanov
TI  - Extension of transformation groups of compact solvmanifolds
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 540
EP  - 571
VL  - 206
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_4_a3/
LA  - en
ID  - SM_2015_206_4_a3
ER  - 
%0 Journal Article
%A M. V. Milovanov
%T Extension of transformation groups of compact solvmanifolds
%J Sbornik. Mathematics
%D 2015
%P 540-571
%V 206
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2015_206_4_a3/
%G en
%F SM_2015_206_4_a3
M. V. Milovanov. Extension of transformation groups of compact solvmanifolds. Sbornik. Mathematics, Tome 206 (2015) no. 4, pp. 540-571. http://geodesic.mathdoc.fr/item/SM_2015_206_4_a3/

[1] L. Auslander, “An exposition of the structure of solvmanifolds. I. Algebraic theory”, Bull. Amer. Math. Soc., 79:2 (1973), 227–261 | DOI | MR | Zbl

[2] M. V. Milovanov, “A description of solvable Lie groups with a given uniform subgroup”, Math. USSR-Sb., 41:1 (1982), 83–99 | DOI | MR | Zbl

[3] M. V. Milovanov, “O gruppakh preobrazovanii kompaktnykh solvmnogoobrazii i probleme Auslendera”, Dokl. NAN Belarusi, 54:5 (2010), 11–14 | MR | Zbl

[4] M. V. Milovanov, “Complete involutive sets of functions on the cotangent bundles of compact solvmanifolds”, Sb. Math., 198:5 (2007), 711–731 | DOI | DOI | MR | Zbl

[5] V. I. Arnold, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, Springer-Verlag, New York–Heidelberg, 1978, xvi+462 pp. | MR | MR | Zbl | Zbl

[6] S. Helgason, Differential geometry and symmetric spaces, Pure Appl. Math., XII, Academic Press, New York–London, 1962, xiv+486 pp. | MR | Zbl | Zbl

[7] R. S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc., no. 22, 1957, iii+123 pp. | MR | Zbl

[8] A. I. Maltsev, “Ob odnosvyaznosti normalnykh delitelei grupp Li”, Dokl. AN SSSR, 34:1 (1942), 12–15

[9] G. D. Mostow, “Factor spaces of solvable groups”, Ann. of Math. (2), 60:1 (1954), 1–27 | DOI | MR | Zbl

[10] L. Auslander, L. Green, F. Hahn, Flows on homogeneous spaces, Ann. of Math. Stud., 53, Princeton Univ. Press, Princeton, N.J., 1963, vii+107 pp. | MR | MR | Zbl | Zbl