Some properties of three-dimensional Klein polyhedra
Sbornik. Mathematics, Tome 206 (2015) no. 4, pp. 510-539

Voir la notice de l'article provenant de la source Math-Net.Ru

We study properties of three-dimensional Klein polyhedra. The main result is as follows. Let $\mathscr{L}_s(N)$ be the set of integer $s$-dimensional lattices with determinant $N$, and let $f'(\Gamma,k)$ be the set of edges $E$ of Klein polyhedra in the lattice $\Gamma$ satisfying $\#(\Gamma\cap E)=k+1$ (that is, the integer length of the edge $E$ is $k$). Then for any $k>1$, $$ \frac{1}{\#\mathscr{L}_s(N)}\sum_{\Gamma\in\mathscr{L}_s(N)}f'(\Gamma,k)= C'_3(k)\cdot \ln^2 N+O_k(\ln N \cdot \ln\ln N), \qquad N\to \infty, $$ where $C'_3(k)$ is a positive constant depending only on $k$, and $$ C'_3(k)=\frac{6}{\zeta(2)\zeta(3)}\cdot\frac{1}{k^3}+O\biggl(\frac{1}{k^4}\biggr). $$ Bibliography: 39 titles.
Keywords: lattice, Klein polyhedron, multidimensional continued fraction.
@article{SM_2015_206_4_a2,
     author = {A. A. Illarionov},
     title = {Some properties of three-dimensional {Klein} polyhedra},
     journal = {Sbornik. Mathematics},
     pages = {510--539},
     publisher = {mathdoc},
     volume = {206},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_4_a2/}
}
TY  - JOUR
AU  - A. A. Illarionov
TI  - Some properties of three-dimensional Klein polyhedra
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 510
EP  - 539
VL  - 206
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_4_a2/
LA  - en
ID  - SM_2015_206_4_a2
ER  - 
%0 Journal Article
%A A. A. Illarionov
%T Some properties of three-dimensional Klein polyhedra
%J Sbornik. Mathematics
%D 2015
%P 510-539
%V 206
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2015_206_4_a2/
%G en
%F SM_2015_206_4_a2
A. A. Illarionov. Some properties of three-dimensional Klein polyhedra. Sbornik. Mathematics, Tome 206 (2015) no. 4, pp. 510-539. http://geodesic.mathdoc.fr/item/SM_2015_206_4_a2/