Some properties of three-dimensional Klein polyhedra
Sbornik. Mathematics, Tome 206 (2015) no. 4, pp. 510-539
Voir la notice de l'article provenant de la source Math-Net.Ru
We study properties of three-dimensional Klein polyhedra. The main result is as follows. Let $\mathscr{L}_s(N)$ be the set of integer $s$-dimensional lattices with determinant $N$, and let $f'(\Gamma,k)$ be the set of edges $E$ of Klein polyhedra in the lattice $\Gamma$ satisfying $\#(\Gamma\cap E)=k+1$ (that is, the integer length of the edge $E$ is $k$). Then for any $k>1$,
$$
\frac{1}{\#\mathscr{L}_s(N)}\sum_{\Gamma\in\mathscr{L}_s(N)}f'(\Gamma,k)= C'_3(k)\cdot \ln^2 N+O_k(\ln N
\cdot \ln\ln N), \qquad N\to \infty,
$$
where $C'_3(k)$ is a positive constant depending only on $k$, and
$$
C'_3(k)=\frac{6}{\zeta(2)\zeta(3)}\cdot\frac{1}{k^3}+O\biggl(\frac{1}{k^4}\biggr).
$$ Bibliography: 39 titles.
Keywords:
lattice, Klein polyhedron, multidimensional continued fraction.
@article{SM_2015_206_4_a2,
author = {A. A. Illarionov},
title = {Some properties of three-dimensional {Klein} polyhedra},
journal = {Sbornik. Mathematics},
pages = {510--539},
publisher = {mathdoc},
volume = {206},
number = {4},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_4_a2/}
}
A. A. Illarionov. Some properties of three-dimensional Klein polyhedra. Sbornik. Mathematics, Tome 206 (2015) no. 4, pp. 510-539. http://geodesic.mathdoc.fr/item/SM_2015_206_4_a2/