@article{SM_2015_206_4_a2,
author = {A. A. Illarionov},
title = {Some properties of three-dimensional {Klein} polyhedra},
journal = {Sbornik. Mathematics},
pages = {510--539},
year = {2015},
volume = {206},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_4_a2/}
}
A. A. Illarionov. Some properties of three-dimensional Klein polyhedra. Sbornik. Mathematics, Tome 206 (2015) no. 4, pp. 510-539. http://geodesic.mathdoc.fr/item/SM_2015_206_4_a2/
[1] F. Klein, “Über eine geometrische Auffassung der gewöhnlichen Kettenbruchentwicklung”, Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl., 3 (1895), 357–359 | Zbl
[2] H. Tsuchihashi, “Higher dimensional analogues of periodic continued fractions and cusp singularities”, Tohoku Math. J. (2), 35:4 (1983), 607–639 | DOI | MR | Zbl
[3] B. F. Skubenko, “Minimum of a decomposable cubic form of three variables”, J. Soviet Math., 53:3 (1991), 302–310 | DOI | MR | Zbl
[4] B. F. Skubenko, “Minima of decomposable forms of degree $n$ in $n$ variables for $n\geqslant3$”, J. Soviet Math., 62:4 (1992), 2928–2935 | DOI | MR | Zbl
[5] V. I. Arnold, “Higher dimensional continued fractions”, Regul. Chaotic Dyn., 3:3 (1998), 10–17 | DOI | MR | Zbl
[6] V. I. Arnold, “Preface”, Pseudoperiodic topology, Amer. Math. Soc. Transl. Ser. 2, 197, Amer. Math. Soc., Providence, RI, 1999, ix–xii | MR | Zbl
[7] V. I. Arnold, Arnold's problems, Springer-Verlag, Berlin–Heidelberg; PHASIS, 2004, xvi+639 pp. | MR | MR | Zbl | Zbl
[8] V. I. Arnold, Tsepnye drobi, MTsNMO, M., 2001, 40 pp.
[9] G. Lachaud, “Polyédre d'Arnol'd et voile d'un cône simplicial: analogues du théoréme de Lagrange”, C. R. Acad. Sci. Paris Sér. I Math., 317:8 (1993), 711–716 | MR | Zbl
[10] G. Lachaud, “Sails and Klein polyhedra”, Number theory (Tiruchirapalli, 1996), Contemp. Math., 210, Amer. Math. Soc., Providence, RI, 1998, 373–385 | DOI | MR | Zbl
[11] E. Korkina, “La périodicité des fractions continues multidimensionnelles”, C. R. Acad. Sci. Paris Sér. I Math., 319:8 (1994), 777–780 | MR | Zbl
[12] E. I. Korkina, “Two-dimensional continued fractions. The simplest examples”, Proc. Steklov Inst. Math., 209 (1995), 124–144 | MR | Zbl
[13] E. I. Korkina, “The simplest 2-dimensional continued fraction”, J. Math. Sci., 82:5 (1996), 3680–3685 | DOI | MR | Zbl
[14] A. D. Bruno, V. I. Parusnikov, “Klein polyhedrals for two cubic Davenport forms”, Math. Notes, 56:4 (1994), 994–1007 | DOI | MR | Zbl
[15] V. I. Parusnikov, “Klein polyhedra for the fourth extremal cubic form”, Math. Notes, 67:1 (2000), 87–102 | DOI | DOI | MR | Zbl
[16] V. I. Parusnikov, “Klein polyhedra for three extremal cubic forms”, Math. Notes, 77:4 (2005), 523–538 | DOI | DOI | MR | Zbl
[17] J. Moussafir, “Sails and Hilbert bases”, Funct. Anal. Appl., 34:2 (2000), 114–118 | DOI | DOI | MR | Zbl
[18] O. N. German, “Sails and Hilbert bases”, Proc. Steklov Inst. Math., 239 (2002), 88–95 | MR | Zbl
[19] O. N. German, “Sails and norm minima of lattices”, Sb. Math., 196:3 (2005), 337–365 | DOI | DOI | MR | Zbl
[20] O. N. German, “Klein polyhedra and relative minima of lattices”, Math. Notes, 79:4 (2006), 505–510 | DOI | DOI | MR | Zbl
[21] O. N. German, “Klein polyhedra and lattices with positive norm minima”, J. Théor. Nombres Bordeaux, 19:1 (2007), 175–190 | DOI | MR | Zbl
[22] O. N. German, E. L. Lakshtanov, “On a multidimensional generalization of Lagrange's theorem on continued fractions”, Izv. Math., 72:1 (2008), 47–61 | DOI | DOI | MR | Zbl
[23] O. N. Karpenkov, “On tori triangulations associated with two-dimensional continued fractions of cubic irrationalities”, Funct. Anal. Appl., 38:2 (2004), 102–110 | DOI | DOI | MR | Zbl
[24] O. N. Karpenkov, “Completely empty pyramids on integer lattices and two-dimensional faces of multidimensional continued fractions”, Monatsh. Math., 152:3 (2007), 217–249 | DOI | MR | Zbl
[25] O. N. Karpenkov, “Constructing multidimensional periodic continued fractions in the sense of Klein”, Math. Comp., 78:267 (2009), 1687–1711 | DOI | MR | Zbl
[26] A. V. Bykovskaya, “A multidimensional generalization of Lagrange's theorem on continued fractions”, Math. Notes, 92:3 (2012), 312–326 | DOI | DOI | MR | Zbl
[27] A. V. Bykovskaya, “A criterion for the integral equivalence of two generalized convex integer polyhedra”, Math. Notes, 94:5 (2013), 609–618 | DOI | DOI | MR | Zbl
[28] O. N. Karpenkov, Geometry of continued fractions, Algorithms Comput. Math., 26, Springer, Heidelberg, 2013, xviii+405 pp. | DOI | MR | Zbl
[29] M. L. Kontsevich, Yu. M. Suhov, “Statistics of Klein polyhedra and multidimensional continued fractions”, Pseudoperiodic topology, Amer. Math. Soc. Transl. Ser. 2, 197, Amer. Math. Soc., Providence, RI, 1999, 9–27 | MR | Zbl
[30] J.-O. Moussafir, Voiles et polyèdres de Klein: Géométrie, algorithmes et statistiques, Doc. Sci. Thése, Univ. Paris IX–Dauphine, Paris, 2000
[31] O. N. Karpenkov, “On an invariant Möbius measure and the Gauss–Kuzmin face distribution”, Proc. Steklov Inst. Math., 258:1 (2007), 74–86 | DOI | MR | Zbl
[32] A. A. Illarionov, D. A. Slinkin, “O kolichestve vershin mnogogrannikov Kleina tselochislennykh reshetok v srednem”, Dalnevost. matem. zhurn., 11:1 (2011), 48–55 | MR | Zbl
[33] A. A. Illarionov, “On the statistical properties of Klein polyhedra in three-dimensional lattices”, Sb. Math., 204:6 (2013), 801–823 | DOI | DOI | MR | Zbl
[34] V. A. Bykovskii, “On the error of number-theoretic quadrature formulas”, Dokl. Math., 67:2 (2003), 175–176 | MR | Zbl
[35] V. A. Bykovskii, “The discrepancy of the Korobov lattice points”, Izv. Math., 76:3 (2012), 446–465 | DOI | DOI | MR | Zbl
[36] H. Heilbronn, “On the average length of a class of finite continued fractions”, Number theory and analysis, Papers in honor of Edmund Landau, Plenum, New York, 1969, 87–96 | MR | Zbl
[37] A. A. Illarionov, “On the asymptotic distribution of integer matrices”, Moscow J. Combin. Number Theory, 1:4 (2011), 13–57 | MR
[38] A. A. Illarionov, “A multidimensional generalization of Heilbronn's theorem on the average length of a finite continued fraction”, Sb. Math., 205:3 (2014), 419–431 | DOI | DOI | MR | Zbl
[39] A. A. Illarionov, “Average number of local minima of three-dimensional integer lattices”, St. Petersburg Math. J., 23:3 (2012), 551–570 | DOI | MR | Zbl