On the Dirichlet problem for a nonlinear elliptic equation
Sbornik. Mathematics, Tome 206 (2015) no. 4, pp. 480-488 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove the existence of an infinite set of solutions to the Dirichlet problem for a nonlinear elliptic equation of the second order. Such a problem for a nonlinear elliptic equation with Laplace operator was studied earlier by Krasnosel'skii, Bahri, Berestycki, Lions, Rabinowitz, Struwe and others. We study the spectrum of this problem and prove the weak convergence to 0 of the sequence of normed eigenfunctions. Moreover, we obtain some estimates for the ‘Fourier coefficients’ of functions in $W^1_{p,0}(\Omega)$. This allows us to improve the preceding results. Bibliography: 8 titles.
Keywords: nonlinear elliptic equation, Dirichlet problem, eigenfunctions.
@article{SM_2015_206_4_a0,
     author = {Yu. V. Egorov},
     title = {On the {Dirichlet} problem for a~nonlinear elliptic equation},
     journal = {Sbornik. Mathematics},
     pages = {480--488},
     year = {2015},
     volume = {206},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_4_a0/}
}
TY  - JOUR
AU  - Yu. V. Egorov
TI  - On the Dirichlet problem for a nonlinear elliptic equation
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 480
EP  - 488
VL  - 206
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_4_a0/
LA  - en
ID  - SM_2015_206_4_a0
ER  - 
%0 Journal Article
%A Yu. V. Egorov
%T On the Dirichlet problem for a nonlinear elliptic equation
%J Sbornik. Mathematics
%D 2015
%P 480-488
%V 206
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2015_206_4_a0/
%G en
%F SM_2015_206_4_a0
Yu. V. Egorov. On the Dirichlet problem for a nonlinear elliptic equation. Sbornik. Mathematics, Tome 206 (2015) no. 4, pp. 480-488. http://geodesic.mathdoc.fr/item/SM_2015_206_4_a0/

[1] M. A. Krasnosel'skii, Topological methods in the theory of nonlinear integral equations, A Pergamon Press Book The Macmillan Co., New York, 1964, xi+395 pp. | MR | MR | Zbl | Zbl

[2] A. Bahri, H. Berestycki, “A perturbation method in critical point theory and applications”, Trans. Amer. Math. Soc., 267:1 (1981), 1–32 | DOI | MR | Zbl

[3] A. Bahri, P. L. Lions, “Morse index of some min-max critical points. I. Application to multiplicity results”, Comm. Pure Appl. Math., 41:8 (1988), 1027–1037 | DOI | MR | Zbl

[4] A. Bahri, “Topological results on a certain class of functionals and applications”, J. Funct. Anal., 41:3 (1981), 397–427 | DOI | MR | Zbl

[5] M. Struwe, “Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems”, Manuscripta Math., 32:3–4 (1980), 335–364 | DOI | MR | Zbl

[6] P. H. Rabinowitz, “Multiple critical points of perturbated symmetric functionals”, Trans. Amer. Math. Soc., 272:2 (1982), 753–769 | DOI | MR | Zbl

[7] M. Ôtani, “A remark on certain nonlinear elliptic equations”, Proc. Fac. Sci. Tokai Univ., 19 (1984), 23–28 | MR | Zbl

[8] R. Courant, D. Hilbert, Methoden der mathematischen Physik, v. I, Grundlehren Math. Wiss., 12, J. Springer, Berlin, 1931, xiv+469 pp. | MR | MR | Zbl | Zbl