@article{SM_2015_206_4_a0,
author = {Yu. V. Egorov},
title = {On the {Dirichlet} problem for a~nonlinear elliptic equation},
journal = {Sbornik. Mathematics},
pages = {480--488},
year = {2015},
volume = {206},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_4_a0/}
}
Yu. V. Egorov. On the Dirichlet problem for a nonlinear elliptic equation. Sbornik. Mathematics, Tome 206 (2015) no. 4, pp. 480-488. http://geodesic.mathdoc.fr/item/SM_2015_206_4_a0/
[1] M. A. Krasnosel'skii, Topological methods in the theory of nonlinear integral equations, A Pergamon Press Book The Macmillan Co., New York, 1964, xi+395 pp. | MR | MR | Zbl | Zbl
[2] A. Bahri, H. Berestycki, “A perturbation method in critical point theory and applications”, Trans. Amer. Math. Soc., 267:1 (1981), 1–32 | DOI | MR | Zbl
[3] A. Bahri, P. L. Lions, “Morse index of some min-max critical points. I. Application to multiplicity results”, Comm. Pure Appl. Math., 41:8 (1988), 1027–1037 | DOI | MR | Zbl
[4] A. Bahri, “Topological results on a certain class of functionals and applications”, J. Funct. Anal., 41:3 (1981), 397–427 | DOI | MR | Zbl
[5] M. Struwe, “Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems”, Manuscripta Math., 32:3–4 (1980), 335–364 | DOI | MR | Zbl
[6] P. H. Rabinowitz, “Multiple critical points of perturbated symmetric functionals”, Trans. Amer. Math. Soc., 272:2 (1982), 753–769 | DOI | MR | Zbl
[7] M. Ôtani, “A remark on certain nonlinear elliptic equations”, Proc. Fac. Sci. Tokai Univ., 19 (1984), 23–28 | MR | Zbl
[8] R. Courant, D. Hilbert, Methoden der mathematischen Physik, v. I, Grundlehren Math. Wiss., 12, J. Springer, Berlin, 1931, xiv+469 pp. | MR | MR | Zbl | Zbl