Distributions of elements on nilpotent varieties of groups
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 206 (2015) no. 3, pp. 470-479
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\mathfrak M$ be some variety of groups, and $F_n(\mathfrak M)$ a free group in $\mathfrak M$ with a basis
$\{x_1,\dots,x_n\}$. Two elements $u(x_1,\dots,x_n)$ and $v(x_1,\dots,x_n)$ of this group induce the same
distributions on $\mathfrak M$ if for any finite group $G\in\mathfrak M$ and any element $g\in G$ the equations $u(x_1,\dots,x_n)=g$ and $v(x_1,\dots,x_n)=g$ have the same number of solutions in $G^n$.
It is proved that two elements of the derived subgroup of a free group of the variety of nilpotent groups of class at most 2 induce the same distributions on this variety if and only if these elements can be transformed into each other by automorphisms, but this is not true for elements that do not belong to the derived subgroup.
Bibliography: 5 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
variety of groups, nilpotent groups, equations in groups, distributions of elements.
                    
                    
                    
                  
                
                
                @article{SM_2015_206_3_a4,
     author = {E. I. Timoshenko},
     title = {Distributions of elements on nilpotent varieties of groups},
     journal = {Sbornik. Mathematics},
     pages = {470--479},
     publisher = {mathdoc},
     volume = {206},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_3_a4/}
}
                      
                      
                    E. I. Timoshenko. Distributions of elements on nilpotent varieties of groups. Sbornik. Mathematics, Tome 206 (2015) no. 3, pp. 470-479. http://geodesic.mathdoc.fr/item/SM_2015_206_3_a4/
