The uniqueness of a~stationary measure for the stochastic system of the Lorenz model describing a~baroclinic atmosphere
Sbornik. Mathematics, Tome 206 (2015) no. 3, pp. 421-469

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with a nonlinear system of partial differential equations with parameters. This system describes the two-layer quasi-solenoidal Lorenz model for a baroclinic atmosphere on a rotating two-dimensional sphere. The right-hand side of the system is perturbed by white noise. Sufficient conditions on the parameters and the right-hand side are obtained so that there exists a unique stationary measure. Bibliography: 40 titles.
Keywords: two-layer quasi-solenoidal Lorenz model for a baroclinic atmosphere, existence of a unique stationary measure.
Mots-clés : white noise perturbation
@article{SM_2015_206_3_a3,
     author = {Yu. Yu. Klevtsova},
     title = {The uniqueness of a~stationary measure for the stochastic system of the {Lorenz} model describing a~baroclinic atmosphere},
     journal = {Sbornik. Mathematics},
     pages = {421--469},
     publisher = {mathdoc},
     volume = {206},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_3_a3/}
}
TY  - JOUR
AU  - Yu. Yu. Klevtsova
TI  - The uniqueness of a~stationary measure for the stochastic system of the Lorenz model describing a~baroclinic atmosphere
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 421
EP  - 469
VL  - 206
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_3_a3/
LA  - en
ID  - SM_2015_206_3_a3
ER  - 
%0 Journal Article
%A Yu. Yu. Klevtsova
%T The uniqueness of a~stationary measure for the stochastic system of the Lorenz model describing a~baroclinic atmosphere
%J Sbornik. Mathematics
%D 2015
%P 421-469
%V 206
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2015_206_3_a3/
%G en
%F SM_2015_206_3_a3
Yu. Yu. Klevtsova. The uniqueness of a~stationary measure for the stochastic system of the Lorenz model describing a~baroclinic atmosphere. Sbornik. Mathematics, Tome 206 (2015) no. 3, pp. 421-469. http://geodesic.mathdoc.fr/item/SM_2015_206_3_a3/