The uniqueness of a stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere
Sbornik. Mathematics, Tome 206 (2015) no. 3, pp. 421-469 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with a nonlinear system of partial differential equations with parameters. This system describes the two-layer quasi-solenoidal Lorenz model for a baroclinic atmosphere on a rotating two-dimensional sphere. The right-hand side of the system is perturbed by white noise. Sufficient conditions on the parameters and the right-hand side are obtained so that there exists a unique stationary measure. Bibliography: 40 titles.
Keywords: two-layer quasi-solenoidal Lorenz model for a baroclinic atmosphere, existence of a unique stationary measure.
Mots-clés : white noise perturbation
@article{SM_2015_206_3_a3,
     author = {Yu. Yu. Klevtsova},
     title = {The uniqueness of a~stationary measure for the stochastic system of the {Lorenz} model describing a~baroclinic atmosphere},
     journal = {Sbornik. Mathematics},
     pages = {421--469},
     year = {2015},
     volume = {206},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_3_a3/}
}
TY  - JOUR
AU  - Yu. Yu. Klevtsova
TI  - The uniqueness of a stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 421
EP  - 469
VL  - 206
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_3_a3/
LA  - en
ID  - SM_2015_206_3_a3
ER  - 
%0 Journal Article
%A Yu. Yu. Klevtsova
%T The uniqueness of a stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere
%J Sbornik. Mathematics
%D 2015
%P 421-469
%V 206
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2015_206_3_a3/
%G en
%F SM_2015_206_3_a3
Yu. Yu. Klevtsova. The uniqueness of a stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere. Sbornik. Mathematics, Tome 206 (2015) no. 3, pp. 421-469. http://geodesic.mathdoc.fr/item/SM_2015_206_3_a3/

[1] Yu. Yu. Klevtsova, “Well-posedness of the Cauchy problem for the stochastic system for the Lorenz model for a baroclinic atmosphere”, Sb. Math., 203:10 (2012), 1490–1517 | DOI | DOI | MR | Zbl

[2] Yu. Yu. Klevtsova, “On the existence of a stationary measure for the stochastic system of the Lorenz model describing a baroclinic atmosphere”, Sb. Math., 204:9 (2013), 1307–1331 | DOI | DOI | MR | Zbl

[3] B. V. Paltsev, Sfericheskie funktsii, Uchebno-metodicheskoe posobie, MFTI, M., 2000, 54 pp.

[4] V. P. Dymnikov, Ustoichivost i predskazuemost krupnomasshtabnykh atmosfernykh protsessov, IVM RAN, M., 2007, 283 pp.

[5] M. S. Agranovich, “Elliptic singular integro-differential operators”, Russian Math. Surveys, 20:5 (1965), 1–121 | DOI | MR | Zbl

[6] K. Yosida, Functional analysis, Grundlehren Math. Wiss., 123, Springer-Verlag, Berlin; Academic Press, Inc., New York, 1965, xi+458 pp. | MR | MR | Zbl | Zbl

[7] Yu. N. Skiba, Matematicheskie voprosy dinamiki vyazkoi barotropnoi zhidkosti na vraschayuscheisya sfere, OVM AN SSSR, M., 1989, 178 pp.

[8] S. G. Mikhlin, Multidimensional singular integrals and integral equations, Pergamon Press, Oxford–New York–Paris, 1965, xi+255 pp. | MR | MR | Zbl | Zbl

[9] S. G. Mikhlin, The problem of the minimum of a quadratic functional, Holden-Day Series in Mathematical Physics, Holden-Day, Inc., San Francisco, Calif.–London–Amsterdam, 1965, ix+155 pp. | MR | MR | Zbl

[10] S. G. Mikhlin, “Differentsirovanie ryadov po sfericheskim funktsiyam”, Dokl. AN SSSR, 126:2 (1959), 278–279 | MR | Zbl

[11] S. G. Mikhlin, Lineinye uravneniya v chastnykh proizvodnykh, Vysshaya shkola, M., 1977, 431 pp. | MR

[12] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, v. 1, Travaux et Recherches Mathématiques, 17, Dunod, Paris, 1968, xx+372 pp. | MR | MR | Zbl | Zbl

[13] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969, xx+554 pp. | MR | MR | Zbl | Zbl

[14] A. V. Bulinskii, A. N. Shiryaev, Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 408 pp.

[15] A. N. Shiryaev, Probability, Grad. Texts in Math., 95, 2nd ed., Springer-Verlag, New York, 1996, xvi+623 pp. | DOI | MR | Zbl

[16] O. Knill, Probability theory and stochastic processes with applications, Overseas Press, New Delhi, 2009, 373 pp.

[17] G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia Math. Appl., 44, Cambridge Univ. Press, Cambridge, 1992, xviii+454 pp. | DOI | MR | Zbl

[18] N. N. Vakhania, V. I. Tarieladze, S. A. Chobanyan, Probability distributions on Banach spaces, Math. Appl. (Soviet Ser.), 14, D. Reidel Publishing Co., Dordrecht, 1987, xxvi+482 pp. | DOI | MR | MR | Zbl | Zbl

[19] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. 1, 2, Graylock Press, Albany, N.Y., 1957, 1961, ix+129 pp., ix+128 pp. | MR | MR | Zbl

[20] R. M. Dudley, Real analysis and probability, Cambridge Stud. Adv. Math., 74, 2nd ed., Cambridge Univ. Press, Cambridge, 2002, x+555 pp. | DOI | MR | Zbl

[21] S. Kuksin, A. Shirikyan, Mathematics of two-dimensional turbulence, Cambridge Tracts in Math., 194, Cambridge Univ. Press, Cambridge, 2012, xvi+320 pp. | DOI | Zbl

[22] V. M. Kadets, Kurs funktsionalnogo analiza, Uchebnoe posobie dlya studentov mekhaniko-matematicheskogo fakulteta, KhNU im. V. N. Karazina, Kharkov, 2006, 607 pp. | MR | Zbl

[23] M. Loève, Probability theory, The University Series in Higher Mathematics, 2nd ed., D. Van Nostrand Co., Inc., Princeton, N. J.–Toronto–New York–London, 1960, xvi+685 pp. | MR | MR | Zbl

[24] I. M. Gel'fand, N. Ya. Vilenkin, Generalized functions, v. 4, Applications of harmonic analysis, Academic Press, New York–London, 1964, xiv+384 pp. | MR | MR | Zbl | Zbl

[25] V. N. Krupchatnikov, G. P. Kurbatkin, Modelirovanie krupnomasshtabnoi dinamiki atmosfery. Metody diagnoza obschei tsirkulyatsii, VTs, Sib. otd-nie AN SSSR, Novosibirsk, 1991, 114 pp.

[26] N. Ikeda, Sh. Watanabe, Stochastic differential equations and diffusion processes, North-Holland Math. Library, 24, North-Holland Publishing Co., Amsterdam–New York; Kodansha, Ltd., Tokyo, 1981, xiv+464 pp. | MR | MR | Zbl | Zbl

[27] Yu. N. Skiba, “Spectral approximation in the numerical stability study of nondivergent viscous flows on a sphere”, Numer. Methods Partial Differential Equations, 14:2 (1998), 143–157 ; L. C. Evans, An introduction to stochastic differential equations, Amer. Math. Soc., Providence, RI, 2013, viii+151 с. ; Lecture notes, Univ. of California, Berkeley, USA, 2006, 139 pp. https://math.berkeley.edu/~evans/SDE.course.pdf | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl | MR | Zbl

[28] P. Mörters, Y. Peres, Brownian motion, Camb. Ser. Stat. Probab. Math., 30, Cambridge Univ. Press, Cambridge, 2010, xii+403 pp. | DOI | MR | Zbl

[29] A. D. Wentzell, A course in the theory of stochastic processes, McGraw-Hill International Book Co., New York, 1981, x+304 pp. | MR | MR | Zbl | Zbl

[30] D. Revuz, M. Yor, Continuous Martingales and Brownian motion, Grundlehren Math. Wiss., 293, 3rd ed., Springer-Verlag, Berlin, 1999, xiv+602 pp. | DOI | MR | Zbl

[31] P.-A. Meyer, Probabilités et potentiel, Publ. Inst. Math. Univ. Strasbourg, XIV, Actualités Sci. Indust., no. 1318, Hermann, Paris, 1966, 320 pp. | MR | Zbl | Zbl

[32] B. Øksendal, Stochastic differential equations. An introduction with applications, Universitext, 5th ed., Springer-Verlag, Berlin, 1998, xx+324 pp. | DOI | MR | Zbl

[33] Yu. N. Skiba, Ob odnoznachnoi razreshimosti uravneniya barotropnogo vikhrya vyazkoi zhidkosti v klassakh obobschennykh funktsii na sfere, Preprint No 194, OVM AN SSSR, M., 1988, 56 pp. | MR

[34] L. A. Lusternik, V. J. Sobolev, Elements of functional analysis, Hindustan Publishing Corp., Delhi; John Wiley Sons, Inc., New York, 1974, xvi+360 pp. | MR | MR | Zbl | Zbl

[35] R. Temam, Navier–Stokes equations. Theory and numerical analysis, Stud. Math. Appl., 2, North-Holland Publishing Co., Amsterdam–New York, 1979, x+519 pp. | MR | MR | Zbl | Zbl

[36] Ph. Hartman, Ordinary differential equations, John Wiley Sons, Inc., New York–London–Sydney, 1964, xiv+612 pp. | MR | MR | Zbl | Zbl

[37] D. W. Stroock, Probability theory, an analitic view, Cambridge Univ. Press, Cambridge, 1993, xvi+512 pp. | MR | Zbl

[38] V. P. Dymnikov, A. N. Filatov, Mathematics of climate modeling, Model. Simul. Sci. Eng. Technol., Birkhäuser Boston, Inc., Boston, MA, 1997, xvi+264 pp. | MR | Zbl | Zbl

[39] A. S. Gorelov, “Dimension of the attractor for a two-layer baroclinic model”, Dokl. Earth Sci., 345A:9 (1996), 1–7 | MR