The uniqueness of a~stationary measure for the stochastic system of the Lorenz model describing a~baroclinic atmosphere
Sbornik. Mathematics, Tome 206 (2015) no. 3, pp. 421-469
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is concerned with a nonlinear system of partial differential equations with parameters. This system describes the two-layer quasi-solenoidal Lorenz model for a baroclinic atmosphere on a rotating two-dimensional sphere. The right-hand side of the system is perturbed by white noise. Sufficient conditions on the parameters and the right-hand side are obtained so that there exists a unique stationary measure.
Bibliography: 40 titles.
Keywords:
two-layer quasi-solenoidal Lorenz model for a baroclinic atmosphere, existence of a unique stationary measure.
Mots-clés : white noise perturbation
Mots-clés : white noise perturbation
@article{SM_2015_206_3_a3,
author = {Yu. Yu. Klevtsova},
title = {The uniqueness of a~stationary measure for the stochastic system of the {Lorenz} model describing a~baroclinic atmosphere},
journal = {Sbornik. Mathematics},
pages = {421--469},
publisher = {mathdoc},
volume = {206},
number = {3},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_3_a3/}
}
TY - JOUR AU - Yu. Yu. Klevtsova TI - The uniqueness of a~stationary measure for the stochastic system of the Lorenz model describing a~baroclinic atmosphere JO - Sbornik. Mathematics PY - 2015 SP - 421 EP - 469 VL - 206 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2015_206_3_a3/ LA - en ID - SM_2015_206_3_a3 ER -
%0 Journal Article %A Yu. Yu. Klevtsova %T The uniqueness of a~stationary measure for the stochastic system of the Lorenz model describing a~baroclinic atmosphere %J Sbornik. Mathematics %D 2015 %P 421-469 %V 206 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2015_206_3_a3/ %G en %F SM_2015_206_3_a3
Yu. Yu. Klevtsova. The uniqueness of a~stationary measure for the stochastic system of the Lorenz model describing a~baroclinic atmosphere. Sbornik. Mathematics, Tome 206 (2015) no. 3, pp. 421-469. http://geodesic.mathdoc.fr/item/SM_2015_206_3_a3/