On a~criterion of conformal parabolicity of a~Riemannian manifold
Sbornik. Mathematics, Tome 206 (2015) no. 3, pp. 389-420

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper relates to the circle of problems concerning the connection between the conformal type of a Riemannian manifold and the canonical form of its isoperimetric function. Two special examples of 2-manifolds are constructed, which explain the meaning, role and importance of the conditions involved in the criterion, previously obtained by the author, which decides whether a noncompact Riemannian $n$-manifold is conformally parabolic. Bibliography: 8 titles.
Keywords: Riemannian manifold, conformal metric, conformal capacity, conformal type of a manifold, isoperimetric function of a Riemannian manifold.
@article{SM_2015_206_3_a2,
     author = {V. M. Keselman},
     title = {On a~criterion of conformal parabolicity of {a~Riemannian} manifold},
     journal = {Sbornik. Mathematics},
     pages = {389--420},
     publisher = {mathdoc},
     volume = {206},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_3_a2/}
}
TY  - JOUR
AU  - V. M. Keselman
TI  - On a~criterion of conformal parabolicity of a~Riemannian manifold
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 389
EP  - 420
VL  - 206
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_3_a2/
LA  - en
ID  - SM_2015_206_3_a2
ER  - 
%0 Journal Article
%A V. M. Keselman
%T On a~criterion of conformal parabolicity of a~Riemannian manifold
%J Sbornik. Mathematics
%D 2015
%P 389-420
%V 206
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2015_206_3_a2/
%G en
%F SM_2015_206_3_a2
V. M. Keselman. On a~criterion of conformal parabolicity of a~Riemannian manifold. Sbornik. Mathematics, Tome 206 (2015) no. 3, pp. 389-420. http://geodesic.mathdoc.fr/item/SM_2015_206_3_a2/