On a criterion of conformal parabolicity of a Riemannian manifold
Sbornik. Mathematics, Tome 206 (2015) no. 3, pp. 389-420 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper relates to the circle of problems concerning the connection between the conformal type of a Riemannian manifold and the canonical form of its isoperimetric function. Two special examples of 2-manifolds are constructed, which explain the meaning, role and importance of the conditions involved in the criterion, previously obtained by the author, which decides whether a noncompact Riemannian $n$-manifold is conformally parabolic. Bibliography: 8 titles.
Keywords: Riemannian manifold, conformal metric, conformal capacity, conformal type of a manifold, isoperimetric function of a Riemannian manifold.
@article{SM_2015_206_3_a2,
     author = {V. M. Keselman},
     title = {On a~criterion of conformal parabolicity of {a~Riemannian} manifold},
     journal = {Sbornik. Mathematics},
     pages = {389--420},
     year = {2015},
     volume = {206},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_3_a2/}
}
TY  - JOUR
AU  - V. M. Keselman
TI  - On a criterion of conformal parabolicity of a Riemannian manifold
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 389
EP  - 420
VL  - 206
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_3_a2/
LA  - en
ID  - SM_2015_206_3_a2
ER  - 
%0 Journal Article
%A V. M. Keselman
%T On a criterion of conformal parabolicity of a Riemannian manifold
%J Sbornik. Mathematics
%D 2015
%P 389-420
%V 206
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2015_206_3_a2/
%G en
%F SM_2015_206_3_a2
V. M. Keselman. On a criterion of conformal parabolicity of a Riemannian manifold. Sbornik. Mathematics, Tome 206 (2015) no. 3, pp. 389-420. http://geodesic.mathdoc.fr/item/SM_2015_206_3_a2/

[1] V. A. Zorich, V. M. Kesel'man, “On the conformal type of a Riemannian manifold”, Funct. Anal. Appl., 30:2 (1996), 106–117 | DOI | DOI | MR | Zbl

[2] V. G. Maz'ja, Sobolev spaces, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985, xix+486 pp. | MR | MR | Zbl | Zbl

[3] V. A. Zorich, V. M. Kesel'man, “The isoperimetric inequality on manifolds of conformally hyperbolic type”, Funct. Anal. Appl., 35:2 (2001), 90–99 | DOI | DOI | MR | Zbl

[4] V. M. Kesel'man, “Isoperimetric inequality on conformally hyperbolic manifolds”, Sb. Math., 194:4 (2003), 495–513 | DOI | DOI | MR | Zbl

[5] V. M. Kesel'man, “The isoperimetric inequality on conformally parabolic manifolds”, Sb. Math., 200:1 (2009), 1–33 | DOI | DOI | MR | Zbl

[6] V. M. Kesel'man, “The relative isoperimetric inequality on a conformally parabolic manifold with boundary”, Sb. Math., 202:7 (2011), 1043–1058 | DOI | DOI | MR | Zbl

[7] V. M. Keselman, “Konformnaya klassifikatsiya nekompaktnykh rimanovykh mnogoobrazii i normalnaya forma izoperimetricheskogo neravenstva”, Sovremennye problemy matematiki i mekhaniki. Matematika, VI, no. 2, Izd-vo MGU, Moskva, 2011, 217–224

[8] V. M. Keselman, “Evklidovo izoperimetricheskoe neravenstvo v klasse konformnykh metrik nekompaktnogo rimanova mnogoobraziya”, Vestn. Volgogr. gos. un-ta. Cer. 1. Matem. Fiz., 2:15 (2011), 33–42