On the structure of the set of coincidence points
Sbornik. Mathematics, Tome 206 (2015) no. 3, pp. 370-388 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the set of coincidence points for two maps between metric spaces. Cardinality, metric and topological properties of the coincidence set are studied. We obtain conditions which guarantee that this set (a) consists of at least two points; (b) consists of at least $n$ points; (c) contains a countable subset; (d) is uncountable. The results are applied to study the structure of the double point set and the fixed point set for multivalued contractions. Bibliography: 12 titles.
Keywords: set-valued map, coincidence point, Hausdorff metric, covering map.
@article{SM_2015_206_3_a1,
     author = {A. V. Arutyunov and B. D. Gel'man},
     title = {On the structure of the set of coincidence points},
     journal = {Sbornik. Mathematics},
     pages = {370--388},
     year = {2015},
     volume = {206},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_3_a1/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - B. D. Gel'man
TI  - On the structure of the set of coincidence points
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 370
EP  - 388
VL  - 206
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_3_a1/
LA  - en
ID  - SM_2015_206_3_a1
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A B. D. Gel'man
%T On the structure of the set of coincidence points
%J Sbornik. Mathematics
%D 2015
%P 370-388
%V 206
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2015_206_3_a1/
%G en
%F SM_2015_206_3_a1
A. V. Arutyunov; B. D. Gel'man. On the structure of the set of coincidence points. Sbornik. Mathematics, Tome 206 (2015) no. 3, pp. 370-388. http://geodesic.mathdoc.fr/item/SM_2015_206_3_a1/

[1] A. V. Arutyunov, “Covering mappings in metric spaces and fixed points”, Dokl. Math., 76:2 (2007), 665–668 | DOI | MR | Zbl

[2] A. V. Arutyunov, “The coincidence point problem for set-valued mappings and Ulam–Hyers stability”, Dokl. Math., 89:2 (2014), 188–191 | DOI | DOI | MR | Zbl

[3] J. Saint Raymond, “Points fixes des contractions multivoques”, Fixed point theory and applications (Marseille, 1989), Pitman Res. Notes Math. Ser., 252, Longman Sci. Tech., Harlow, 1991, 359–375 | MR | Zbl

[4] J. Saint Raymond, “Multuvalued contractions”, Set-Valued Anal., 2:4 (1994), 559–571 | DOI | MR | Zbl

[5] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, Knizhnyi dom «Librokom», M., 2011, 224 pp. | MR | Zbl

[6] P. S. Aleksandrov, Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Nauka, M., 1977, 367 pp. | MR

[7] A. V. Arutyunov, “Stability of coincidence points and properties of covering mappings”, Math. Notes, 86:2 (2009), 153–158 | DOI | DOI | MR | Zbl

[8] A. V. Arutyunov, Lektsii po vypuklomu i mnogoznachnomu analizu, Fizmatlit, M., 2014, 188 pp.

[9] L. V. Kantorovich, G. P. Akilov, Functional analysis, Pergamon Press, Oxford–Elmsford, N.Y., 1982, xiv+589 pp. | MR | MR | Zbl

[10] B. D. Gelman, V. K. Musienko, “O teoreme A. V. Arutyunova”, Aktualnye problemy matematiki i informatiki. Trudy matematicheskogo fakulteta VGU, 2010, no. 2, 81–91

[11] A. D. Ioffe, “Regularity on a fixed set”, SIAM J. Optim., 21:4 (2011), 1345–1370 | DOI | MR | Zbl

[12] A. D. Ioffe, “Towards variational analysis in metric spaces: metric regularity and fixed points”, Math. Program., 123:1, Ser. B (2010), 241–252 | DOI | MR | Zbl