Maps with separable dynamics and the spectral properties of the operators generated by them
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 206 (2015) no. 3, pp. 341-369
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A map $\alpha $ of a space $X$ into itself generates weighted shift operators $B$ in function spaces on $X$. The spectral properties of such operators are intimately connected with the dynamics of $\alpha$. It was known previously that the spectrum of an operator depends only on the set of invariant ergodic measures for $\alpha$. Conditions for the right invertibility of the operators $B-\lambda I$ are obtained when $\lambda$ is a spectral value. The main result states that right invertibility is only possible when a nontrivial attractor exists.
Bibliography: 29 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
spectrum of an operator, one-sided invertibility, essential spectrum, attractor, ergodic measure.
                    
                    
                    
                  
                
                
                @article{SM_2015_206_3_a0,
     author = {A. B. Antonevich and A. A. Ahmatova and Ju. Makowska},
     title = {Maps with separable dynamics and the spectral properties of the operators generated by them},
     journal = {Sbornik. Mathematics},
     pages = {341--369},
     publisher = {mathdoc},
     volume = {206},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_3_a0/}
}
                      
                      
                    TY - JOUR AU - A. B. Antonevich AU - A. A. Ahmatova AU - Ju. Makowska TI - Maps with separable dynamics and the spectral properties of the operators generated by them JO - Sbornik. Mathematics PY - 2015 SP - 341 EP - 369 VL - 206 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2015_206_3_a0/ LA - en ID - SM_2015_206_3_a0 ER -
%0 Journal Article %A A. B. Antonevich %A A. A. Ahmatova %A Ju. Makowska %T Maps with separable dynamics and the spectral properties of the operators generated by them %J Sbornik. Mathematics %D 2015 %P 341-369 %V 206 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2015_206_3_a0/ %G en %F SM_2015_206_3_a0
A. B. Antonevich; A. A. Ahmatova; Ju. Makowska. Maps with separable dynamics and the spectral properties of the operators generated by them. Sbornik. Mathematics, Tome 206 (2015) no. 3, pp. 341-369. http://geodesic.mathdoc.fr/item/SM_2015_206_3_a0/
