, $1/p\notin\mathbb N$. In the present paper, in particular, it is shown that the rate of uniform rational approximation of functions is described rather well using the rate of uniform piecewise-polynomial approximations of the function itself and its conjugate function. The converse is also true. Bibliography: 14 titles.
Mots-clés : Besov space.
@article{SM_2015_206_2_a7,
author = {A. A. Pekarskii},
title = {Conjugate functions and their connection with uniform rational and piecewise-polynomial approximations},
journal = {Sbornik. Mathematics},
pages = {333--340},
year = {2015},
volume = {206},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_2_a7/}
}
A. A. Pekarskii. Conjugate functions and their connection with uniform rational and piecewise-polynomial approximations. Sbornik. Mathematics, Tome 206 (2015) no. 2, pp. 333-340. http://geodesic.mathdoc.fr/item/SM_2015_206_2_a7/
[1] R. A. DeVore, G. G. Lorentz, Constructive approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993, x+449 pp. | MR | Zbl
[2] A. A. Pekarskii, “Classes of analytic functions determined by best rational approximations in $H_p$”, Math. USSR-Sb., 55:1 (1986), 1–18 | DOI | MR | Zbl
[3] G. G. Lorentz, M. v. Golitschek, Y. Makovoz, Constructive approximation. Advanced problems, Grundlehren Math. Wiss., 304, Springer-Verlag, Berlin, 1996, xii+649 pp. | MR | Zbl
[4] A. A. Pekarskii, H. Stahl, “Bernstein type inequalities for derivatives of rational functions in $L_p$ spaces for $p1$”, Sb. Math., 186:1 (1995), 121–131 | DOI | MR | Zbl
[5] A. A. Pekarskii, E. I. Stelmakh, “Ob isklyuchitelnykh sluchayakh v sootnosheniyakh dlya nailuchshikh ratsionalnykh i kusochno-polinomialnykh priblizhenii”, Anal. Math., 35:2 (2009), 119–130 | DOI | MR | Zbl
[6] P. L. Duren, Theory of $H_p$ spaces, Pure Appl. Math., 38, Academic Press, New York–London, 1970, xii+258 pp. | MR | Zbl
[7] V. V. Peller, Hankel operators and their applications, Springer Monogr. Math., Springer-Verlag, New York, 2003, xvi+784 pp. | DOI | MR | Zbl
[8] A. A. Pekarskiĭ, “Tchebycheff rational approximation in the disk, on the circle, and on a closed interval”, Math. USSR-Sb., 61:1 (1988), 87–102 | DOI | MR | Zbl
[9] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Univ. Press, Cambridge, 1934, xii+314 pp. | MR | MR | Zbl
[10] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Grundlehren Math. Wiss., 223, Springer-Verlag, Berlin–New York, 1976, x+207 pp. | MR | MR | Zbl
[11] A. A. Gonchar, L. D. Grigoryan, “On estimates of the norm of the holomorphic component of a meromorphic function”, Math. USSR-Sb., 28:4 (1976), 571–575 | DOI | MR | Zbl
[12] L. D. Grigoryan, “Estimates of the norm of the holomorphic components of functions meromorphic in domains with a smooth boundary”, Math. USSR-Sb., 29:1 (1976), 139–146 | DOI | MR | Zbl
[13] E. P. Dolzhenko, “Skorost priblizheniya ratsionalnymi drobyami i svoistva funktsii”, Matem. sb., 56(98):4 (1962), 403–432 | MR | Zbl
[14] P. Oswald, “On Besov–Hardy–Sobolev spaces of analytic functions in the unit disc”, Czechoslovak Math. J., 33:108 (1983), 408–426 | MR | Zbl