Conjugate functions and their connection with uniform rational and piecewise-polynomial approximations
Sbornik. Mathematics, Tome 206 (2015) no. 2, pp. 333-340 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

As is well known, there is a close relationship between rational and piecewise-polynomial approximations of functions. This relationship is manifested in the most vivid way in the case of approximations in Lebesgue spaces $L_p$ for $0, $1/p\notin\mathbb N$. In the present paper, in particular, it is shown that the rate of uniform rational approximation of functions is described rather well using the rate of uniform piecewise-polynomial approximations of the function itself and its conjugate function. The converse is also true. Bibliography: 14 titles.
Keywords: conjugate functions, best rational approximations, best piecewise-polynomial approximations
Mots-clés : Besov space.
@article{SM_2015_206_2_a7,
     author = {A. A. Pekarskii},
     title = {Conjugate functions and their connection with uniform rational and piecewise-polynomial approximations},
     journal = {Sbornik. Mathematics},
     pages = {333--340},
     year = {2015},
     volume = {206},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_2_a7/}
}
TY  - JOUR
AU  - A. A. Pekarskii
TI  - Conjugate functions and their connection with uniform rational and piecewise-polynomial approximations
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 333
EP  - 340
VL  - 206
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_2_a7/
LA  - en
ID  - SM_2015_206_2_a7
ER  - 
%0 Journal Article
%A A. A. Pekarskii
%T Conjugate functions and their connection with uniform rational and piecewise-polynomial approximations
%J Sbornik. Mathematics
%D 2015
%P 333-340
%V 206
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2015_206_2_a7/
%G en
%F SM_2015_206_2_a7
A. A. Pekarskii. Conjugate functions and their connection with uniform rational and piecewise-polynomial approximations. Sbornik. Mathematics, Tome 206 (2015) no. 2, pp. 333-340. http://geodesic.mathdoc.fr/item/SM_2015_206_2_a7/

[1] R. A. DeVore, G. G. Lorentz, Constructive approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993, x+449 pp. | MR | Zbl

[2] A. A. Pekarskii, “Classes of analytic functions determined by best rational approximations in $H_p$”, Math. USSR-Sb., 55:1 (1986), 1–18 | DOI | MR | Zbl

[3] G. G. Lorentz, M. v. Golitschek, Y. Makovoz, Constructive approximation. Advanced problems, Grundlehren Math. Wiss., 304, Springer-Verlag, Berlin, 1996, xii+649 pp. | MR | Zbl

[4] A. A. Pekarskii, H. Stahl, “Bernstein type inequalities for derivatives of rational functions in $L_p$ spaces for $p1$”, Sb. Math., 186:1 (1995), 121–131 | DOI | MR | Zbl

[5] A. A. Pekarskii, E. I. Stelmakh, “Ob isklyuchitelnykh sluchayakh v sootnosheniyakh dlya nailuchshikh ratsionalnykh i kusochno-polinomialnykh priblizhenii”, Anal. Math., 35:2 (2009), 119–130 | DOI | MR | Zbl

[6] P. L. Duren, Theory of $H_p$ spaces, Pure Appl. Math., 38, Academic Press, New York–London, 1970, xii+258 pp. | MR | Zbl

[7] V. V. Peller, Hankel operators and their applications, Springer Monogr. Math., Springer-Verlag, New York, 2003, xvi+784 pp. | DOI | MR | Zbl

[8] A. A. Pekarskiĭ, “Tchebycheff rational approximation in the disk, on the circle, and on a closed interval”, Math. USSR-Sb., 61:1 (1988), 87–102 | DOI | MR | Zbl

[9] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Univ. Press, Cambridge, 1934, xii+314 pp. | MR | MR | Zbl

[10] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Grundlehren Math. Wiss., 223, Springer-Verlag, Berlin–New York, 1976, x+207 pp. | MR | MR | Zbl

[11] A. A. Gonchar, L. D. Grigoryan, “On estimates of the norm of the holomorphic component of a meromorphic function”, Math. USSR-Sb., 28:4 (1976), 571–575 | DOI | MR | Zbl

[12] L. D. Grigoryan, “Estimates of the norm of the holomorphic components of functions meromorphic in domains with a smooth boundary”, Math. USSR-Sb., 29:1 (1976), 139–146 | DOI | MR | Zbl

[13] E. P. Dolzhenko, “Skorost priblizheniya ratsionalnymi drobyami i svoistva funktsii”, Matem. sb., 56(98):4 (1962), 403–432 | MR | Zbl

[14] P. Oswald, “On Besov–Hardy–Sobolev spaces of analytic functions in the unit disc”, Czechoslovak Math. J., 33:108 (1983), 408–426 | MR | Zbl