Bishop-Runge approximations and inversion of a~Riemann-Klein theorem
Sbornik. Mathematics, Tome 206 (2015) no. 2, pp. 311-332
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we give results about projective embeddings of Riemann surfaces, smooth or nodal, which we apply to the inverse Dirichlet-to-Neumann problem and to the inversion of a Riemann-Klein theorem. To produce useful embeddings, we adapt a technique of Bishop in the open bordered case and use a Runge-type harmonic approximation theorem in the compact case.
Bibliography: 36 titles.
Keywords:
Riemann surface, projective embedding. Bishop approximation, Dirichlet-to-Neumann problem, Riemann-Klein theorem.
@article{SM_2015_206_2_a6,
author = {V. Michel and G. M. Henkin},
title = {Bishop-Runge approximations and inversion of {a~Riemann-Klein} theorem},
journal = {Sbornik. Mathematics},
pages = {311--332},
publisher = {mathdoc},
volume = {206},
number = {2},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_2_a6/}
}
V. Michel; G. M. Henkin. Bishop-Runge approximations and inversion of a~Riemann-Klein theorem. Sbornik. Mathematics, Tome 206 (2015) no. 2, pp. 311-332. http://geodesic.mathdoc.fr/item/SM_2015_206_2_a6/