@article{SM_2015_206_2_a6,
author = {V. Michel and G. M. Henkin},
title = {Bishop-Runge approximations and inversion of {a~Riemann-Klein} theorem},
journal = {Sbornik. Mathematics},
pages = {311--332},
year = {2015},
volume = {206},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_2_a6/}
}
V. Michel; G. M. Henkin. Bishop-Runge approximations and inversion of a Riemann-Klein theorem. Sbornik. Mathematics, Tome 206 (2015) no. 2, pp. 311-332. http://geodesic.mathdoc.fr/item/SM_2015_206_2_a6/
[1] E. Bishop, “Mappings of partially analytic spaces”, Amer. J. Math., 83:2 (1961), 209–242 | DOI | MR | Zbl
[2] R. Narasimhan, “Imbedding of holomorphically complete complex spaces”, Amer. J. Math., 82:4 (1960), 917–934 | DOI | MR | Zbl
[3] G. Henkin, V. Michel, “On the explicit reconstruction of a Riemann surface from its Dirichlet–Neumann operator”, Geom. Funct. Anal., 17:1 (2007), 116–155 | DOI | MR | Zbl
[4] G. Henkin, V. Michel, “Inverse Dirichlet-to-Neumann problem for nodal curves”, Russian Math. Surveys, 67:6 (2012), 1069–1089 | DOI | DOI | MR | Zbl
[5] W. Koppelman, “The Riemann–Hilbert problem for finite Riemann surfaces”, Comm. Pure Appl. Math., 12:1 (1959), 13–35 | DOI | MR | Zbl
[6] Sh. Kaliman, M. Zaidenberg, “A tranversality theorem for holomorphic mappings and stability of Eisenman–Kobayashi measures”, Trans. Amer. Math. Soc., 348:2 (1996), 661–672 | DOI | MR | Zbl
[7] F. Forstnerič, Stein manifolds and holomorphic mappings. The homotopy principle in complex analysis, Ergeb. Math. Grenzgeb. (3), 56, Springer, Heidelberg, 2011, xii+489 pp. | DOI | MR | Zbl
[8] B. Drinovec-Drnovšek, F. Forstnerič, “Approximation of holomorphic mappings on strongly pseudoconvex domains”, Forum Math., 20:5 (2008), 817–840 | DOI | MR | Zbl
[9] A. M. Garsia, “An imbedding of closed Riemann surfaces in Euclidean space”, Comment. Math. Helv., 35 (1961), 93–110 | DOI | MR | Zbl
[10] R. A. Rüedy, “Embeddings of open Riemann surfaces”, Comment. Math. Helv., 46 (1971), 214–225 | DOI | MR | Zbl
[11] C. Guillarmou, L. Tzou, “Survey on Calderon inverse problem in 2 dimensions”, Inverse problems and applications: inside out. II, Math. Sci. Res. Inst. Publ., 60, ed. G. Uhlmann, MSRI, Cambridge Univ. Press, Cambridge, 2013, 119–166 ; 2011, 37 pp. www.math.ens.fr/~guillarmou/procMSRI.pdf | MR | Zbl
[12] H. Stahl, “The convergence of Padé approximants to functions with branch points”, J. Approx. Theory, 91:2 (1997), 139–204 | DOI | MR | Zbl
[13] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “Padé–Chebyshev approximants for multivalued analytic functions, variation of equilibrium energy, and the $S$-property of stationary compact sets”, Russian Math. Surveys, 66:6 (2011), 1015–1048 | DOI | DOI | MR | Zbl
[14] T. Bagby, “A Runge theorem for harmonic functions on closed subsets of Riemann surfaces”, Proc. Amer. Math. Soc., 103:1 (1988), 160–164 | DOI | MR | Zbl
[15] A. Boivin, P. M. Gauthier, “Approximation harmonique sur les surfaces de Riemann”, Canad. J. Math., 36:1 (1984), 1–8 | DOI | MR | Zbl
[16] M. Rosenlicht, “Generalized Jacobian varieties”, Ann. of Math. (2), 59:3 (1954), 505–530 | DOI | MR | Zbl
[17] J. Harris, I. Morrison, Moduli of curves, Grad. Texts in Math., 187, Springer-Verlag, New York, 1998, xiv+366 pp. | MR | Zbl
[18] P. Dolbeault, G. Henkin, “Chaînes holomorphes de bord donné dans $\mathbb{C}\mathrm{P}^{n}$”, Bull. Soc. Math. France, 125:3 (1997), 383–445 | MR | Zbl
[19] F. R. Harvey, H. B. Lawson, Jr., “Boundaries of varieties in projective manifolds”, J. Geom. Anal., 14:4 (2004), 673–695 | DOI | MR | Zbl
[20] R. A. Walker, “Extended shockwave decomposability related to boundaries of holomorphic 1-chains within $\mathbb C\mathbb P^2$”, Indiana Univ. Math. J., 57:3 (2008), 1133–1172 | DOI | MR | Zbl
[21] K.-W. Wiegmann, “Einbettungen komplexer Räume in Zahlenräume”, Invent. Math., 1:3 (1966), 229–242 | DOI | MR | Zbl
[22] J. Schürmann, “Embeddings of Stein spaces into affine spaces of minimal dimension”, Math. Ann., 307:3 (1997), 381–399 | DOI | MR | Zbl
[23] H. Behnke, K. Stein, “Entwicklung analytischer Funktionen auf Riemannschen Flächen”, Math. Ann., 120:1 (1949), 430–461 | DOI | MR | Zbl
[24] O. Forster, Riemannsche Flächen, Heidelberger Taschenbücher, 184, Springer-Verlag, Berlin–New York, 1977, x+223 pp. | DOI | MR | MR | Zbl
[25] R. Remmert, Classical topics in complex function theory, Transl. from German, Grad. Texts in Math., 172, Springer-Verlag, New York, 1998, xx+349 pp. | DOI | MR | Zbl
[26] R. Remmert, “Projektionen analytischer Mengen”, Math. Ann., 130:5 (1956), 410–441 | DOI | MR | Zbl
[27] E. Bishop, “Subalgebras of functions on a Riemann surface”, Pacific J. Math., 8:1 (1958), 29–50 | DOI | MR | Zbl
[28] G. M. Henkin, “H. Lewy's equation and analysis on a pseudoconvex manifold. II”, Math. USSR-Sb., 31:1 (1977), 63–94 | DOI | MR | Zbl
[29] L. Hörmander, An introduction to complex analysis in several variables, North-Holland Math. Library, 7, 3rd ed., North-Holland Publishing Co., Amsterdam, 1990, xii+254 pp. | MR | MR | Zbl | Zbl
[30] M. Morse, G. B. Van Schaack, “The critical point theory under general boundary conditions”, Ann. of Math. (2), 35:3 (1934), 545–571 | DOI | MR | Zbl
[31] H. Whitney, “Differentiable manifolds”, Ann. of Math. (2), 37:3 (1936), 645–680 | DOI | MR | Zbl
[32] A. Sard, “The measure of the critical values of differentiable maps”, Bull. Amer. Math. Soc., 48:12 (1942), 883–890 | DOI | MR | Zbl
[33] T. Aubin, Some nonlinear problems in Riemannian geometry, Springer Monogr. Math., Springer-Verlag, Berlin, 1998, xviii+395 pp. | DOI | MR | Zbl
[34] G. de Rham, Variétés différentiables. Formes, courants, formes harmoniques, Publ. Inst. Math. Univ. Nancago, III, Actualites Sci. Indust., no. 1222b, 3-ème éd., rev. et augm., Hermann, Paris, 1973, x+198 pp. | MR | Zbl
[35] W. V. D. Hodge, The theory and applications of harmonic integrals, 2nd ed., Cambridge Univ. Press, Cambridge, 1952, x+282 pp. | MR | Zbl
[36] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, N.J., 1970, xiv+290 pp. | MR | MR | Zbl | Zbl