Bishop-Runge approximations and inversion of a~Riemann-Klein theorem
Sbornik. Mathematics, Tome 206 (2015) no. 2, pp. 311-332

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we give results about projective embeddings of Riemann surfaces, smooth or nodal, which we apply to the inverse Dirichlet-to-Neumann problem and to the inversion of a Riemann-Klein theorem. To produce useful embeddings, we adapt a technique of Bishop in the open bordered case and use a Runge-type harmonic approximation theorem in the compact case. Bibliography: 36 titles.
Keywords: Riemann surface, projective embedding. Bishop approximation, Dirichlet-to-Neumann problem, Riemann-Klein theorem.
@article{SM_2015_206_2_a6,
     author = {V. Michel and G. M. Henkin},
     title = {Bishop-Runge approximations and inversion of {a~Riemann-Klein} theorem},
     journal = {Sbornik. Mathematics},
     pages = {311--332},
     publisher = {mathdoc},
     volume = {206},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_2_a6/}
}
TY  - JOUR
AU  - V. Michel
AU  - G. M. Henkin
TI  - Bishop-Runge approximations and inversion of a~Riemann-Klein theorem
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 311
EP  - 332
VL  - 206
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_2_a6/
LA  - en
ID  - SM_2015_206_2_a6
ER  - 
%0 Journal Article
%A V. Michel
%A G. M. Henkin
%T Bishop-Runge approximations and inversion of a~Riemann-Klein theorem
%J Sbornik. Mathematics
%D 2015
%P 311-332
%V 206
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2015_206_2_a6/
%G en
%F SM_2015_206_2_a6
V. Michel; G. M. Henkin. Bishop-Runge approximations and inversion of a~Riemann-Klein theorem. Sbornik. Mathematics, Tome 206 (2015) no. 2, pp. 311-332. http://geodesic.mathdoc.fr/item/SM_2015_206_2_a6/