Mots-clés : $A$-discriminant set
@article{SM_2015_206_2_a5,
author = {E. N. Mikhalkin and A. K. Tsikh},
title = {Singular strata of cuspidal type for the classical discriminant},
journal = {Sbornik. Mathematics},
pages = {282--310},
year = {2015},
volume = {206},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_2_a5/}
}
E. N. Mikhalkin; A. K. Tsikh. Singular strata of cuspidal type for the classical discriminant. Sbornik. Mathematics, Tome 206 (2015) no. 2, pp. 282-310. http://geodesic.mathdoc.fr/item/SM_2015_206_2_a5/
[1] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Math. Theory Appl., Birkhäuser Boston, Inc., Boston, MA, 1994, x+523 pp. | DOI | MR | Zbl
[2] M. M. Kapranov, “A characterization of $A$-discriminantal hypersurfaces in terms of the logarithmic Gauss map”, Math. Ann., 290:1 (1991), 277–285 | DOI | MR | Zbl
[3] Algebraic statistics for computational biology, eds. L. Pachter, B. Sturmfels, Cambridge Univ. Press, New York, 2005, xii+420 pp. | DOI | MR | Zbl
[4] B. Sturmfels, “Open problems in algebraic statistics”, Emerging applications of algebraic geometry, IMA Vol. Math. Appl., 149, Springer, New York, 2009, 351–363 | DOI | MR | Zbl
[5] J. Huh, Discriminants, Horn uniformization, and varieties with maximum likelihood degree one, arXiv: 1301.2732v2
[6] M. Passare, A. Tsikh, “Algebraic equations and hypergeometric series”, The legacy of Niels Henrik Abel, Springer, Berlin, 2004, 653–672 | MR | Zbl
[7] I. A. Antipova, A. K. Tsikh, “The discriminant locus of a system of $n$ Laurent polynomials in $n$ variables”, Izv. Math., 76:5 (2012), 881–906 | DOI | DOI | MR | Zbl
[8] I. A. Antipova, E. N. Mikhalkin, “Analytic continuations of a general algebraic function by means of Puiseux series”, Proc. Steklov Inst. Math., 279:1 (2012), 3–13 | DOI | MR | Zbl
[9] M. Passare, A. Tsikh, “Amoebas: their spines and their contours”, Idempotent mathematics and mathematical physics, Contemp. Math., 377, Amer. Math. Soc., Providence, RI, 2005, 275–288 | DOI | MR | Zbl
[10] G. Mikhalkin, “Real algebraic curves, the moment map and amoebas”, Ann. of Math. (2), 151:1 (2000), 309–326 | DOI | MR | Zbl
[11] N. A. Bushueva, A. K. Tsikh, “On amoebas of algebraic sets of higher codimension”, Proc. Steklov Inst. Math., 279:1 (2012), 52–63 | DOI | MR | Zbl
[12] I. A. Antipova, “Inversion of many-dimensional Mellin transforms and solutions of algebraic equations”, Sb. Math., 198:4 (2007), 447–463 | DOI | DOI | MR | Zbl