Singular strata of cuspidal type for the classical discriminant
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 206 (2015) no. 2, pp. 282-310
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider an algebraic equation with variable complex coefficients. For the reduced discriminant set of such an equation we obtain parametrizations of the singular strata corresponding to the existence of roots of multiplicity at least $j$. These parametrizations are the restrictions of the Horn-Kapranov parametrization of the whole discriminant set to a chain of nested linear subspaces of the projective space. It is proved that such strata can be transformed into reduced $A$-discriminant sets by monomial transformations.
Bibliography: 12 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
general algebraic equation, Horn-Kapranov parametrization, singular stratum.
Mots-clés : $A$-discriminant set
                    
                  
                
                
                Mots-clés : $A$-discriminant set
@article{SM_2015_206_2_a5,
     author = {E. N. Mikhalkin and A. K. Tsikh},
     title = {Singular strata of cuspidal type for the classical discriminant},
     journal = {Sbornik. Mathematics},
     pages = {282--310},
     publisher = {mathdoc},
     volume = {206},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_2_a5/}
}
                      
                      
                    E. N. Mikhalkin; A. K. Tsikh. Singular strata of cuspidal type for the classical discriminant. Sbornik. Mathematics, Tome 206 (2015) no. 2, pp. 282-310. http://geodesic.mathdoc.fr/item/SM_2015_206_2_a5/
