Criteria for $C^m$-approximability by bianalytic functions on planar compact sets
Sbornik. Mathematics, Tome 206 (2015) no. 2, pp. 242-281 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper puts forward criteria for approximability by bianalytic functions in the norms of the Whitney-type spaces $C^m$ on planar compact sets with $m \in (0, 2)$. These results, which are analogues of Vitushkin's well-known criteria for uniform rational approximation, together with results of O'Farrell and Verdera (the case $m \geqslant 2$) and Mazalov (the case $m=0$), provide a complete set of criteria for approximability by bianalytic functions for all $m \ge 0$. These conditions for approximability are obtained for both individual functions and (as corollaries) for classes of functions, using the terminology of geometric measure theory. Bibliography: 21 titles.
Keywords: $C^m$-approximation by bianalytic functions, bianalytic $C^m$-capacity, Hausdorff content of order $m$, Vitushkin-type localization operator.
@article{SM_2015_206_2_a4,
     author = {M. Ya. Mazalov and P. V. Paramonov},
     title = {Criteria for $C^m$-approximability by bianalytic functions on planar compact sets},
     journal = {Sbornik. Mathematics},
     pages = {242--281},
     year = {2015},
     volume = {206},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_2_a4/}
}
TY  - JOUR
AU  - M. Ya. Mazalov
AU  - P. V. Paramonov
TI  - Criteria for $C^m$-approximability by bianalytic functions on planar compact sets
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 242
EP  - 281
VL  - 206
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_2_a4/
LA  - en
ID  - SM_2015_206_2_a4
ER  - 
%0 Journal Article
%A M. Ya. Mazalov
%A P. V. Paramonov
%T Criteria for $C^m$-approximability by bianalytic functions on planar compact sets
%J Sbornik. Mathematics
%D 2015
%P 242-281
%V 206
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2015_206_2_a4/
%G en
%F SM_2015_206_2_a4
M. Ya. Mazalov; P. V. Paramonov. Criteria for $C^m$-approximability by bianalytic functions on planar compact sets. Sbornik. Mathematics, Tome 206 (2015) no. 2, pp. 242-281. http://geodesic.mathdoc.fr/item/SM_2015_206_2_a4/

[1] M. Ya. Mazalov, P. V. Paramonov, K. Yu. Fedorovskiy, “Conditions for $C^m$-approximability of functions by solutions of elliptic equations”, Russian Math. Surveys, 67:6 (2012), 1023–1068 | DOI | DOI | MR | Zbl

[2] A. G. O'Farrell, “Rational approximation in Lipschitz norms. II”, Proc. Roy. Irish Acad. Sect. A, 79:11 (1979), 103–114 | MR | Zbl

[3] J. Verdera, “$C^m$-approximation by solutions of elliptic equations, and Calderón–Zygmund operators”, Duke Math. J., 55:1 (1987), 157–187 | DOI | MR | Zbl

[4] M. Ya. Mazalov, “Uniform approximations by bianalytic functions on arbitrary compact subsets of $\mathbb C$”, Sb. Math., 195:5 (2004), 687–709 | DOI | DOI | MR | Zbl

[5] A. G. Vitushkin, “The analytic capacity of sets in problems of approximation theory”, Russian Math. Surveys, 22:6 (1967), 139–200 | DOI | MR | Zbl

[6] P. V. Paramonov, “On harmonic approximation in the $C^1$-norm”, Math. USSR-Sb., 71:1 (1992), 183–207 | DOI | MR | Zbl

[7] J. Verdera, “Removability, capacity and approximation”, Complex potential theory (Montreal, PQ, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 439, Kluwer Acad. Publ., Dordrecht, 1994, 419–473 | MR | Zbl

[8] P. V. Paramonov, “Some new criteria for uniform approximability of functions by rational fractions”, Sb. Math., 186:9 (1995), 1325–1340 | DOI | MR | Zbl

[9] M. Ya. Mazalov, “Criterion of uniform approximability by harmonic functions on compact sets in $\mathbb R^3$”, Proc. Steklov Inst. Math., 279:1 (2012), 110–154 | DOI | MR | Zbl

[10] L. Carleson, Selected problems on exceptional sets, Van Nostrand Math. Studies, 13, D. Van Nostrand Co., Inc., Princeton, N.J.–Toronto, Ont.–London, 1967, v+151 pp. | MR | MR | Zbl | Zbl

[11] M. Ya. Mazalov, “A criterion for approximability by harmonic functions in Lipschitz spaces”, J. Math. Sci. (N. Y.), 194:6 (2013), 678–692 | DOI | MR | Zbl

[12] P. V. Paramonov, K. Yu. Fedorovskiy, “Uniform and $C^1$-approximability of functions on compact subsets of $\mathbb R^2$ by solutions of second-order elliptic equations”, Sb. Math., 190:2 (1999), 285–307 | DOI | DOI | MR | Zbl

[13] R. Harvey, J. Polking, “Removable singularities of solutions of linear partial differential equations”, Acta Math., 125:1 (1970), 39–56 | DOI | MR | Zbl

[14] M. S. Mel'nikov, “Metric properties of analytic $\alpha$-capacity and approximation of analytic functions with a Hölder condition by rational functions”, Math. USSR-Sb., 8:1 (1969), 115–124 | DOI | MR | Zbl

[15] J. Verdera, M. S. Mel'nikov, P. V. Paramonov, “$C^1$-approximation and extension of subharmonic functions”, Sb. Math., 192:4 (2001), 515–535 | DOI | DOI | MR | Zbl

[16] J. Mateu, Yu. Netrusov, J. Orobitg, J. Verdera, “BMO and Lipschitz approximation by solutions of elliptic equations”, Ann. Inst. Fourier (Grenoble), 46:4 (1996), 1057–1081 | DOI | MR | Zbl

[17] J. Mateu, J. Orobitg, “Lipschitz approximation by harmonic functions and some applications to spectral synthesis”, Indiana Univ. Math. J., 39:3 (1990), 703–736 | DOI | MR | Zbl

[18] X. Tolsa, “Painlevé's problem and the semiadditivity of analytic capacity”, Acta Math., 190:1 (2003), 105–149 | DOI | MR | Zbl

[19] X. Tolsa, “The semiadditivity of continuous analytic capacity and the inner boundary conjecture”, Amer. J. Math., 126:3 (2004), 523–567 | DOI | MR | Zbl

[20] X. Tolsa, “$L^2$-boundedness of the Cauchy transform implies $L^2$-boundedness of all Calderón–Zygmund operators associated to odd kernels”, Publ. Mat., 48:2 (2004), 445–479 | DOI | MR | Zbl

[21] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, N.J., 1970, xiv+290 pp. | MR | MR | Zbl | Zbl