Criteria for $C^m$-approximability by bianalytic functions on planar compact sets
Sbornik. Mathematics, Tome 206 (2015) no. 2, pp. 242-281
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper puts forward criteria for approximability by bianalytic functions in the norms of the Whitney-type spaces $C^m$ on planar compact sets with $m \in (0, 2)$. These results, which are analogues of Vitushkin's well-known criteria for uniform rational approximation, together with results of O'Farrell and Verdera (the case $m \geqslant 2$) and Mazalov (the case $m=0$), provide a complete set of criteria for approximability by bianalytic functions for all $m \ge 0$. These conditions for approximability are obtained for both individual functions and (as corollaries) for classes of functions, using the terminology of geometric measure theory.
Bibliography: 21 titles.
Keywords:
$C^m$-approximation by bianalytic functions, bianalytic $C^m$-capacity, Hausdorff content of order $m$,
Vitushkin-type localization operator.
@article{SM_2015_206_2_a4,
author = {M. Ya. Mazalov and P. V. Paramonov},
title = {Criteria for $C^m$-approximability by bianalytic functions on planar compact sets},
journal = {Sbornik. Mathematics},
pages = {242--281},
publisher = {mathdoc},
volume = {206},
number = {2},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_2_a4/}
}
TY - JOUR AU - M. Ya. Mazalov AU - P. V. Paramonov TI - Criteria for $C^m$-approximability by bianalytic functions on planar compact sets JO - Sbornik. Mathematics PY - 2015 SP - 242 EP - 281 VL - 206 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2015_206_2_a4/ LA - en ID - SM_2015_206_2_a4 ER -
M. Ya. Mazalov; P. V. Paramonov. Criteria for $C^m$-approximability by bianalytic functions on planar compact sets. Sbornik. Mathematics, Tome 206 (2015) no. 2, pp. 242-281. http://geodesic.mathdoc.fr/item/SM_2015_206_2_a4/