Families of vector measures which are equilibrium measures in an external field
Sbornik. Mathematics, Tome 206 (2015) no. 2, pp. 211-224 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider vector extremal problems in the theory of logarithmic potential with external field by looking at an example of two-dimensional problems with Nikishin interaction matrix and variable masses $2x$ and $x$ of the first and second components of the vector measure, respectively. The dependence of the supports of the equilibrium measures, equlibrium constants and energy on the parameter $x$ is analysed. Integral formulae recovering the extremal measure with mass $x$ from the supports of extremal measures with smaller masses are obtained. Bibliography: 27 titles.
Keywords: logarithmic vector potential, extremal vector measure.
@article{SM_2015_206_2_a2,
     author = {M. A. Lapik},
     title = {Families of vector measures which are equilibrium measures in an external field},
     journal = {Sbornik. Mathematics},
     pages = {211--224},
     year = {2015},
     volume = {206},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_2_a2/}
}
TY  - JOUR
AU  - M. A. Lapik
TI  - Families of vector measures which are equilibrium measures in an external field
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 211
EP  - 224
VL  - 206
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_2_a2/
LA  - en
ID  - SM_2015_206_2_a2
ER  - 
%0 Journal Article
%A M. A. Lapik
%T Families of vector measures which are equilibrium measures in an external field
%J Sbornik. Mathematics
%D 2015
%P 211-224
%V 206
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2015_206_2_a2/
%G en
%F SM_2015_206_2_a2
M. A. Lapik. Families of vector measures which are equilibrium measures in an external field. Sbornik. Mathematics, Tome 206 (2015) no. 2, pp. 211-224. http://geodesic.mathdoc.fr/item/SM_2015_206_2_a2/

[1] E. A. Rakhmanov, “On asymptotic properties of polynomials orthogonal on the real axis”, Math. USSR-Sb., 47:1 (1984), 155–193 | DOI | MR | Zbl

[2] A. A. Gonchar, E. A. Rakhmanov, “On the convergence of simultaneous Padé approximants for systems of functions of Markov type”, Proc. Steklov Inst. Math., 157 (1983), 31–50 | MR | Zbl

[3] A. A. Gonchar, E. A. Rakhmanov, “On the equilibrium problem for vector potentials”, Russian Math. Surveys, 40:4 (1985), 183–184 | DOI | MR | Zbl

[4] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium distributions and degree of rational approximation of analytic functions”, Math. USSR-Sb., 62:2 (1989), 305–348 | DOI | MR | Zbl

[5] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Hermite–Padé approximants for systems of Markov-type functions”, Sb. Math., 188:5 (1997), 671–696 | DOI | DOI | MR | Zbl

[6] A. I. Aptekarev, V. G. Lysov, “Systems of Markov functions generated by graphs and the asymptotics of their Hermite–Padé approximants”, Sb. Math., 201:2 (2010), 183–234 | DOI | DOI | MR | Zbl

[7] B. Beckermann, V. Kalyagin, A. C. Matos, F. Wielonsky, “Equilibrium problems for vector potentials with semidefinite interaction matrices and constrained masses”, Constr. Approx., 37:1 (2013), 101–134 | DOI | MR | Zbl

[8] A. Hardy, A. B. J. Kuijlaars, “Weakly admissible vector equilibrium problems”, J. Approx. Theory, 164:6 (2012), 854–868 | DOI | MR | Zbl

[9] A. I. Aptekarev, G. López Lagomasino, A. Mártínez-Finkelshtein, On Nikishin systems with discrete components and weak asymptotics of multiple orthogonal polynomials, arXiv: 1403.3729

[10] A. I. Aptekarev, V. I. Buslaev, A. Martínez-Finkelshtein, S. P. Suetin, “Padé approximants, continued fractions, and orthogonal polynomials”, Russian Math. Surveys, 66:6 (2011), 1049–1131 | DOI | DOI | MR | Zbl

[11] A. I. Aptekarev, A. B. J. Kuijlaars, “Hermite–Padé approximations and multiple orthogonal polynomial ensembles”, Russian Math. Surveys, 66:6 (2011), 1133–1199 | DOI | DOI | MR | Zbl

[12] L. Pastur, M. Shcherbina, “Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles”, J. Statist. Phys., 86:1-2 (1997), 109–147 | DOI | MR | Zbl

[13] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, X. Zhou, “Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory”, Comm. Pure Appl. Math., 52:11 (1999), 1335–1425 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[14] A. I. Aptekarev, P. M. Bleher, A. B. J. Kuijlaars, “Large $n$ limit of Gaussian random matrices with external source. II”, Comm. Math. Phys., 259:2 (2005), 367–389 | DOI | MR | Zbl

[15] V. S. Buyarov, E. A. Rakhmanov, “Families of equilibrium measures in an external field on the real axis”, Sb. Math., 190:6 (1999), 791–802 | DOI | DOI | MR | Zbl

[16] V. S. Buyarov, “Logarithmic asymptotics of polynomials orthogonal on $\mathbb R$ with asymmetric weights”, Math. Notes, 50:2 (1991), 789–795 | DOI | MR | Zbl

[17] E. M. Nikishin, V. N. Sorokin, Rational approximations and orthogonality, Transl. Math. Monogr., 92, Amer. Math. Soc., Providence, RI, 1991, viii+221 pp. | MR | MR | Zbl | Zbl

[18] E. B. Saff, V. Totik, Logarithmic potentials with external fields, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997, xvi+505 pp. | DOI | MR | Zbl

[19] N. S. Landkof, Foundations of modern potential theory, Grundlehren Math. Wiss., 180, Springer-Verlag, New York–Heidelberg, 1972, x+424 pp. | MR | MR | Zbl | Zbl

[20] M. A. Lapik, “Equilibrium measure for the vector logarithmic potential problem with an external field and the Nikishin interaction matrix”, Russian Math. Surveys, 67:3 (2012), 579–581 | DOI | DOI | MR | Zbl

[21] E. M. Nikishin, “Asymptotic behavior of linear forms for simultaneous Padé approximants”, Soviet Math. (Iz. VUZ), 30:2 (1986), 43–52 | MR | Zbl

[22] E. A. Rakhmanov, S. P. Suetin, “The distribution of the zeros of the Hermite–Padé polynomials for a pair of functions forming a Nikishin system”, Sb. Math., 204:9 (2013), 1347–1390 | DOI | DOI | MR | Zbl

[23] E. M. Nikishin, “On simultaneous Padé approximants”, Math. USSR-Sb., 41:4 (1982), 409–425 | DOI | MR | Zbl

[24] A. I. Aptekarev, “Strong asymptotics of multiply orthogonal polynomials for Nikishin systems”, Sb. Math., 190:5 (1999), 631–669 | DOI | DOI | MR | Zbl

[25] A. I. Aptekarev, G. López Lagomasino, I. A. Rocha, “Ratio asymptotics of Hermite–Padé polynomials for Nikishin systems”, Sb. Math., 196:8 (2005), 1089–1107 | DOI | DOI | MR | Zbl

[26] H. N. Mhaskar, E. B. Saff, “Where does the sup norm of a weighted polynomial live?”, Constr. Approx, 1:1 (1985), 71–91 | DOI | MR | Zbl

[27] M. A. Lapik, “Support of the extremal measure in a vector equilibrium problem”, Sb. Math., 197:8 (2006), 1205–1221 | DOI | DOI | MR | Zbl