Families of vector measures which are equilibrium measures in an external field
Sbornik. Mathematics, Tome 206 (2015) no. 2, pp. 211-224

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider vector extremal problems in the theory of logarithmic potential with external field by looking at an example of two-dimensional problems with Nikishin interaction matrix and variable masses $2x$ and $x$ of the first and second components of the vector measure, respectively. The dependence of the supports of the equilibrium measures, equlibrium constants and energy on the parameter $x$ is analysed. Integral formulae recovering the extremal measure with mass $x$ from the supports of extremal measures with smaller masses are obtained. Bibliography: 27 titles.
Keywords: logarithmic vector potential, extremal vector measure.
@article{SM_2015_206_2_a2,
     author = {M. A. Lapik},
     title = {Families of vector measures which are equilibrium measures in an external field},
     journal = {Sbornik. Mathematics},
     pages = {211--224},
     publisher = {mathdoc},
     volume = {206},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_2_a2/}
}
TY  - JOUR
AU  - M. A. Lapik
TI  - Families of vector measures which are equilibrium measures in an external field
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 211
EP  - 224
VL  - 206
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_2_a2/
LA  - en
ID  - SM_2015_206_2_a2
ER  - 
%0 Journal Article
%A M. A. Lapik
%T Families of vector measures which are equilibrium measures in an external field
%J Sbornik. Mathematics
%D 2015
%P 211-224
%V 206
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2015_206_2_a2/
%G en
%F SM_2015_206_2_a2
M. A. Lapik. Families of vector measures which are equilibrium measures in an external field. Sbornik. Mathematics, Tome 206 (2015) no. 2, pp. 211-224. http://geodesic.mathdoc.fr/item/SM_2015_206_2_a2/