@article{SM_2015_206_2_a1,
author = {V. S. Buyarov},
title = {On the disc of meromorphy of a~regular $C$-fraction},
journal = {Sbornik. Mathematics},
pages = {201--210},
year = {2015},
volume = {206},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_2_a1/}
}
V. S. Buyarov. On the disc of meromorphy of a regular $C$-fraction. Sbornik. Mathematics, Tome 206 (2015) no. 2, pp. 201-210. http://geodesic.mathdoc.fr/item/SM_2015_206_2_a1/
[1] W. B. Jones, W. J. Thron, Continued fractions. Analytic theory and applications, Encyclopedia Math. Appl., 11, Addison-Wesley Publishing Co., Reading, Mass., 1980, xxix+428 pp. | MR | MR | Zbl
[2] T. I. Stiltes, Issledovaniya o nepreryvnykh drobyakh, ONTI, Kharkov–Kiev, 1936, 160 pp.; T.-J. Stieltjes, “Recherches sur les fractions continues”, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys., 8:4 (1894), J1–J122 ; Suite et fin, 9:1 (1895), A5–A47 | MR | Zbl | MR
[3] L. J. Rogers, “On the representation of certain asymptotic series as convergent continued fractions”, Proc. London Math. Soc., 2–4:1 (1907), 72–89 | DOI | MR | Zbl
[4] N. P. Callas, W. J. Thron, “Singularities of meromorphic functions represented by regular $C$-fractions”, Norske Vid. Selsk. Skr. (Trondheim), 1967, no. 6, 11 pp | MR | Zbl
[5] N. P. Callas, W. J. Thron, “Singular points of certain functions represented by $C$-fractions”, J. Indian Math. Soc. (N.S.), 32, suppl. I (1968), 325–353 | MR | Zbl
[6] N. P. Callas, W. J. Thron, “Singularities of a class of meromorphic functions”, Proc. Amer. Math. Soc., 33:2 (1972), 445–454 | DOI | MR | Zbl
[7] J. Worpitsky, “Untersuchungen über die Entwickelung der monodromen und monogenen Funktionen durch Kettenbruche”, Friedrichs-Gymnasium und Realschule Jahresbericht, Berlin, 1865, 3–39
[8] V. I. Buslaev, “Convergence of the Rogers–Ramanujan continued fraction”, Sb. Math., 194:6 (2003), 833–856 | DOI | DOI | MR | Zbl
[9] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, R.I., 1969, vi+676 pp. | MR | MR | Zbl | Zbl
[10] G. Polya, “Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete. III”, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl., 1929, 55–62 | Zbl