On the disc of meromorphy of a~regular $C$-fraction
Sbornik. Mathematics, Tome 206 (2015) no. 2, pp. 201-210
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider families of regular continued $C$-fractions with parameters determined by the values of a function on the orbit of a point in the phase space of a dynamical system. We prove that the radius of meromorphy of such a fraction is constant almost everywhere. Bounds for this constant are found.
Bibliography: 10 titles.
Keywords:
power series, regular $C$-fraction, disc of meromorphy, stationary random process.
@article{SM_2015_206_2_a1,
author = {V. S. Buyarov},
title = {On the disc of meromorphy of a~regular $C$-fraction},
journal = {Sbornik. Mathematics},
pages = {201--210},
publisher = {mathdoc},
volume = {206},
number = {2},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_2_a1/}
}
V. S. Buyarov. On the disc of meromorphy of a~regular $C$-fraction. Sbornik. Mathematics, Tome 206 (2015) no. 2, pp. 201-210. http://geodesic.mathdoc.fr/item/SM_2015_206_2_a1/