On the disc of meromorphy of a~regular $C$-fraction
Sbornik. Mathematics, Tome 206 (2015) no. 2, pp. 201-210

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider families of regular continued $C$-fractions with parameters determined by the values of a function on the orbit of a point in the phase space of a dynamical system. We prove that the radius of meromorphy of such a fraction is constant almost everywhere. Bounds for this constant are found. Bibliography: 10 titles.
Keywords: power series, regular $C$-fraction, disc of meromorphy, stationary random process.
@article{SM_2015_206_2_a1,
     author = {V. S. Buyarov},
     title = {On the disc of meromorphy of a~regular $C$-fraction},
     journal = {Sbornik. Mathematics},
     pages = {201--210},
     publisher = {mathdoc},
     volume = {206},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_2_a1/}
}
TY  - JOUR
AU  - V. S. Buyarov
TI  - On the disc of meromorphy of a~regular $C$-fraction
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 201
EP  - 210
VL  - 206
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_2_a1/
LA  - en
ID  - SM_2015_206_2_a1
ER  - 
%0 Journal Article
%A V. S. Buyarov
%T On the disc of meromorphy of a~regular $C$-fraction
%J Sbornik. Mathematics
%D 2015
%P 201-210
%V 206
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2015_206_2_a1/
%G en
%F SM_2015_206_2_a1
V. S. Buyarov. On the disc of meromorphy of a~regular $C$-fraction. Sbornik. Mathematics, Tome 206 (2015) no. 2, pp. 201-210. http://geodesic.mathdoc.fr/item/SM_2015_206_2_a1/