Convergence of $m$-point Padé approximants of a tuple of multivalued analytic functions
Sbornik. Mathematics, Tome 206 (2015) no. 2, pp. 175-200 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove the convergence of $m$-point Padé approximants of an $m$-tuple of holomorphic germs that admit analytic continuation along all paths in the extended complex plane that do not pass through a finite set of points. This result extends Stahl's theorem from the case $m=1$ to the case of an arbitrary $m\in\mathbb N$. Bibliography: 15 titles.
Keywords: rational approximation, convergence in capacity, limiting distribution of poles.
Mots-clés : orthogonal polynomials, Padé approximants
@article{SM_2015_206_2_a0,
     author = {V. I. Buslaev},
     title = {Convergence of $m$-point {Pad\'e} approximants of a~tuple of multivalued analytic functions},
     journal = {Sbornik. Mathematics},
     pages = {175--200},
     year = {2015},
     volume = {206},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_2_a0/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - Convergence of $m$-point Padé approximants of a tuple of multivalued analytic functions
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 175
EP  - 200
VL  - 206
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_2_a0/
LA  - en
ID  - SM_2015_206_2_a0
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T Convergence of $m$-point Padé approximants of a tuple of multivalued analytic functions
%J Sbornik. Mathematics
%D 2015
%P 175-200
%V 206
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2015_206_2_a0/
%G en
%F SM_2015_206_2_a0
V. I. Buslaev. Convergence of $m$-point Padé approximants of a tuple of multivalued analytic functions. Sbornik. Mathematics, Tome 206 (2015) no. 2, pp. 175-200. http://geodesic.mathdoc.fr/item/SM_2015_206_2_a0/

[1] G. Polya, “Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete. III”, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl., 1929, 55–62 | Zbl

[2] H. Grötzsch, “Über ein Variationsproblem der konformen Abbildung”, Ber. Verh. Sächs. Akad. Wiss. Leipzig Math.-Phys. Kl., 82 (1930), 251–263 | Zbl

[3] M. A. Lavrentieff, “Sur un problème de maximum dans la représentation conforme”, C. R. Acad. Sci. Paris, 191 (1930), 827–829 | Zbl

[4] M. A. Lavrentev, “K teorii konformnykh otobrazhenii”, Tr. Fiz.-matem. in-ta im. V. A. Steklova, 5, Izd-vo AN SSSR, L., 1934, 159–245 | Zbl

[5] G. V. Kuz'mina, “Moduli of families of curves and quadratic differentials”, Proc. Steklov Inst. Math., 139 (1982), 1–231 | MR | MR | Zbl | Zbl

[6] K. Strebel, Quadratic differentials, Ergeb. Math. Grenzgeb. (3), 5, Springer-Verlag, Berlin, 1984, xii+184 pp. | DOI | MR | Zbl

[7] H. Stahl, “Orthogonal polynomials with complex-valued weight function”, I, Constr. Approx., 2:1 (1986), 225–240 ; II, 241–251 | DOI | MR | Zbl | DOI | Zbl

[8] H. Stahl, “Extremal domains associated with an analytic function”, I, Complex Variables Theory Appl., 4:4 (1985), 311–324 ; II, 325–338 | DOI | MR | Zbl | DOI | Zbl

[9] V. I. Buslaev, “Convergence of multipoint Padé approximants of piecewise analytic functions”, Sb. Math., 204:2 (2013), 190–222 | DOI | DOI | MR | Zbl

[10] E. B. Saff, V. Totik, Logarithmic potentials with external fields, Appendix B by T. Bloom, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997, xvi+505 pp. | DOI | MR | Zbl

[11] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium distributions and degree of rational approximation of analytic functions”, Math. USSR-Sb., 62:2 (1989), 305–348 | DOI | MR | Zbl

[12] V. I. Buslaev, A. Martínez-Finkelshtein, S. P. Suetin, “Method of interior variations and existence of $S$-compact sets”, Proc. Steklov Inst. Math., 279 (2012), 25–51 | DOI | MR | Zbl

[13] E. A. Rakhmanov, “Orthogonal polynomials and $S$-curves”, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 195–239 | DOI | MR

[14] E. A. Perevoznikova, E. A. Rakhmanov, Variatsiya ravnovesnoi energii i $S$-svoistvo kompaktov minimalnoi emkosti, Preprint, M., 1994

[15] A. Martínez-Finkelshtein, E. A. Rakhmanov, “Critical measures, quadratic differentials, and weak limits of zeroes of Stieltjes polynomials”, Comm. Math. Phys., 302:1 (2011), 53–111 | DOI | MR | Zbl

[16] V. I. Buslaev, S. P. Suetin, “On the existence of compacta of minimal capacity in the problems of rational approximation of multivalued analytic functions”, J. Approx. Theory, 2015 (to appear)