Convergence of $m$-point Pad\'e approximants of a~tuple of multivalued analytic functions
Sbornik. Mathematics, Tome 206 (2015) no. 2, pp. 175-200
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the convergence of $m$-point Padé approximants of an $m$-tuple of holomorphic germs that admit analytic continuation along all paths in the extended complex plane that do not pass through a finite set of points.
This result extends Stahl's theorem from the case $m=1$ to the case of an arbitrary $m\in\mathbb N$.
Bibliography: 15 titles.
Keywords:
rational approximation, convergence in capacity, limiting distribution of poles.
Mots-clés : orthogonal polynomials, Padé approximants
Mots-clés : orthogonal polynomials, Padé approximants
@article{SM_2015_206_2_a0,
author = {V. I. Buslaev},
title = {Convergence of $m$-point {Pad\'e} approximants of a~tuple of multivalued analytic functions},
journal = {Sbornik. Mathematics},
pages = {175--200},
publisher = {mathdoc},
volume = {206},
number = {2},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_2_a0/}
}
V. I. Buslaev. Convergence of $m$-point Pad\'e approximants of a~tuple of multivalued analytic functions. Sbornik. Mathematics, Tome 206 (2015) no. 2, pp. 175-200. http://geodesic.mathdoc.fr/item/SM_2015_206_2_a0/