Convergence of $m$-point Pad\'e approximants of a~tuple of multivalued analytic functions
Sbornik. Mathematics, Tome 206 (2015) no. 2, pp. 175-200

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the convergence of $m$-point Padé approximants of an $m$-tuple of holomorphic germs that admit analytic continuation along all paths in the extended complex plane that do not pass through a finite set of points. This result extends Stahl's theorem from the case $m=1$ to the case of an arbitrary $m\in\mathbb N$. Bibliography: 15 titles.
Keywords: rational approximation, convergence in capacity, limiting distribution of poles.
Mots-clés : orthogonal polynomials, Padé approximants
@article{SM_2015_206_2_a0,
     author = {V. I. Buslaev},
     title = {Convergence of $m$-point {Pad\'e} approximants of a~tuple of multivalued analytic functions},
     journal = {Sbornik. Mathematics},
     pages = {175--200},
     publisher = {mathdoc},
     volume = {206},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_2_a0/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - Convergence of $m$-point Pad\'e approximants of a~tuple of multivalued analytic functions
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 175
EP  - 200
VL  - 206
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_2_a0/
LA  - en
ID  - SM_2015_206_2_a0
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T Convergence of $m$-point Pad\'e approximants of a~tuple of multivalued analytic functions
%J Sbornik. Mathematics
%D 2015
%P 175-200
%V 206
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2015_206_2_a0/
%G en
%F SM_2015_206_2_a0
V. I. Buslaev. Convergence of $m$-point Pad\'e approximants of a~tuple of multivalued analytic functions. Sbornik. Mathematics, Tome 206 (2015) no. 2, pp. 175-200. http://geodesic.mathdoc.fr/item/SM_2015_206_2_a0/