Carathéodory domains and Rudin's converse of the maximum modulus principle
Sbornik. Mathematics, Tome 206 (2015) no. 1, pp. 161-174 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain extensions of the classical Rudin theorem on the converse of the maximum modulus principle from the unit disc to Carathéodory domains. The proofs are based on recent results about properties of conformal mappings of Carathéodory domains, which are also considered in the paper. Bibliography: 18 titles.
Keywords: maximum modulus principle, meromorphic functions, equality in the sense of conformal mappings.
Mots-clés : Carathéodory domain
@article{SM_2015_206_1_a9,
     author = {K. Yu. Fedorovskiy},
     title = {Carath\'eodory domains and {Rudin's} converse of the maximum modulus principle},
     journal = {Sbornik. Mathematics},
     pages = {161--174},
     year = {2015},
     volume = {206},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_1_a9/}
}
TY  - JOUR
AU  - K. Yu. Fedorovskiy
TI  - Carathéodory domains and Rudin's converse of the maximum modulus principle
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 161
EP  - 174
VL  - 206
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_1_a9/
LA  - en
ID  - SM_2015_206_1_a9
ER  - 
%0 Journal Article
%A K. Yu. Fedorovskiy
%T Carathéodory domains and Rudin's converse of the maximum modulus principle
%J Sbornik. Mathematics
%D 2015
%P 161-174
%V 206
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2015_206_1_a9/
%G en
%F SM_2015_206_1_a9
K. Yu. Fedorovskiy. Carathéodory domains and Rudin's converse of the maximum modulus principle. Sbornik. Mathematics, Tome 206 (2015) no. 1, pp. 161-174. http://geodesic.mathdoc.fr/item/SM_2015_206_1_a9/

[1] W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987, xiv+416 pp. | MR | Zbl

[2] S. N. Mergelyan, Uniform approximations to functions of a complex variable, Amer. Math. Soc. Translation, 101, Amer. Math. Soc., Providence, R.I., 1954, 99 pp. | MR | MR | Zbl | Zbl

[3] J. Wermer, Rudin's theorem and projective hulls, 2006, arXiv: math/0611060v1

[4] J. T. Anderson, J. A. Cima, N. Levenberg, T. J. Ransford, “Projective hulls and characterizations of meromorphic functions”, Indiana Univ. Math. J., 61:6 (2012), 2111–2122 | DOI | MR | Zbl

[5] O. Dovgoshey, “Certain characterizations of Carathéodory domains”, Comput. Methods Funct. Theory, 5:2 (2005), 489–503 | DOI | MR | Zbl

[6] J. J. Carmona, K. Yu. Fedorovskiy, “Conformal maps and uniform approximation by polyanalytic functions”, Selected topics in complex analysis, Oper. Theory Adv. Appl., 158, Birkhäuser, Basel, 2005, 109–130 | DOI | MR | Zbl

[7] J. J. Carmona, K. Yu. Fedorovskiy, “New conditions for uniform approximation by polyanalytic polynomials”, Analiticheskie i geometricheskie voprosy kompleksnogo analiza, Sbornik statei, Tr. MIAN, 279, MAIK, M., 2012, 227–241 | MR | Zbl

[8] W. Rudin, “Analyticity, and the maximum modulus principle”, Duke Math. J., 20:3 (1953), 449–457 | DOI | MR | Zbl

[9] E. Bishop, “The structure of certain measures”, Duke Math. J., 25:2 (1958), 283–289 | DOI | MR | Zbl

[10] J. Wermer, “On algebras of continuous functions”, Proc. Amer. Math. Soc., 4:6 (1953), 866–869 | DOI | MR | Zbl

[11] R. Narasimhan, Analysis on real and complex manifolds, Adv. Stud. Pure Math., 1, Masson Cie, Éditeurs, Paris; North-Holland Publishing Co., Amsterdam, 1968, x+246 pp. | MR | Zbl | Zbl

[12] K. Yu. Fedorovskii, “Uniform $n$-analytic polynomial approximations of functions on rectifiable contours in $\mathbb C$”, Math. Notes, 59:4 (1996), 435–439 | DOI | DOI | MR | Zbl

[13] J. J. Carmona, P. V. Paramonov, K. Yu. Fedorovskiy, “On uniform approximation by polyanalytic polynomials and the Dirichlet problem for bianalytic functions”, Sb. Math., 193:10 (2002), 1469–1492 | DOI | DOI | MR | Zbl

[14] Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren Math. Wiss., 299, Springer-Verlag, Berlin, 1992, x+300 pp. | DOI | MR | Zbl

[15] E. Bishop, “Boudnary measures of analytic differentials”, Duke Math. J., 27:3 (1960), 331–340 | DOI | MR | Zbl

[16] G. M. Golusin, Geometrische Funktionentheorie, Hochschulbucher fur Math., 31, VEB Deutscher Verlag der Wissenschaften, Berlin, 1957, xii+438 pp. | MR | MR | Zbl | Zbl

[17] O. J. Farrell, “On approximation to a mapping function by polynomials”, Amer. J. Math., 54:3 (1932), 571–578 | DOI | MR | Zbl

[18] A. A. Dovgoshei, “The F. and M. Riesz' theorem and Carathéodory domains”, Anal. Math., 21:3 (1995), 165–175 | DOI | MR | Zbl