Mots-clés : Carathéodory domain
@article{SM_2015_206_1_a9,
author = {K. Yu. Fedorovskiy},
title = {Carath\'eodory domains and {Rudin's} converse of the maximum modulus principle},
journal = {Sbornik. Mathematics},
pages = {161--174},
year = {2015},
volume = {206},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_1_a9/}
}
K. Yu. Fedorovskiy. Carathéodory domains and Rudin's converse of the maximum modulus principle. Sbornik. Mathematics, Tome 206 (2015) no. 1, pp. 161-174. http://geodesic.mathdoc.fr/item/SM_2015_206_1_a9/
[1] W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987, xiv+416 pp. | MR | Zbl
[2] S. N. Mergelyan, Uniform approximations to functions of a complex variable, Amer. Math. Soc. Translation, 101, Amer. Math. Soc., Providence, R.I., 1954, 99 pp. | MR | MR | Zbl | Zbl
[3] J. Wermer, Rudin's theorem and projective hulls, 2006, arXiv: math/0611060v1
[4] J. T. Anderson, J. A. Cima, N. Levenberg, T. J. Ransford, “Projective hulls and characterizations of meromorphic functions”, Indiana Univ. Math. J., 61:6 (2012), 2111–2122 | DOI | MR | Zbl
[5] O. Dovgoshey, “Certain characterizations of Carathéodory domains”, Comput. Methods Funct. Theory, 5:2 (2005), 489–503 | DOI | MR | Zbl
[6] J. J. Carmona, K. Yu. Fedorovskiy, “Conformal maps and uniform approximation by polyanalytic functions”, Selected topics in complex analysis, Oper. Theory Adv. Appl., 158, Birkhäuser, Basel, 2005, 109–130 | DOI | MR | Zbl
[7] J. J. Carmona, K. Yu. Fedorovskiy, “New conditions for uniform approximation by polyanalytic polynomials”, Analiticheskie i geometricheskie voprosy kompleksnogo analiza, Sbornik statei, Tr. MIAN, 279, MAIK, M., 2012, 227–241 | MR | Zbl
[8] W. Rudin, “Analyticity, and the maximum modulus principle”, Duke Math. J., 20:3 (1953), 449–457 | DOI | MR | Zbl
[9] E. Bishop, “The structure of certain measures”, Duke Math. J., 25:2 (1958), 283–289 | DOI | MR | Zbl
[10] J. Wermer, “On algebras of continuous functions”, Proc. Amer. Math. Soc., 4:6 (1953), 866–869 | DOI | MR | Zbl
[11] R. Narasimhan, Analysis on real and complex manifolds, Adv. Stud. Pure Math., 1, Masson Cie, Éditeurs, Paris; North-Holland Publishing Co., Amsterdam, 1968, x+246 pp. | MR | Zbl | Zbl
[12] K. Yu. Fedorovskii, “Uniform $n$-analytic polynomial approximations of functions on rectifiable contours in $\mathbb C$”, Math. Notes, 59:4 (1996), 435–439 | DOI | DOI | MR | Zbl
[13] J. J. Carmona, P. V. Paramonov, K. Yu. Fedorovskiy, “On uniform approximation by polyanalytic polynomials and the Dirichlet problem for bianalytic functions”, Sb. Math., 193:10 (2002), 1469–1492 | DOI | DOI | MR | Zbl
[14] Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren Math. Wiss., 299, Springer-Verlag, Berlin, 1992, x+300 pp. | DOI | MR | Zbl
[15] E. Bishop, “Boudnary measures of analytic differentials”, Duke Math. J., 27:3 (1960), 331–340 | DOI | MR | Zbl
[16] G. M. Golusin, Geometrische Funktionentheorie, Hochschulbucher fur Math., 31, VEB Deutscher Verlag der Wissenschaften, Berlin, 1957, xii+438 pp. | MR | MR | Zbl | Zbl
[17] O. J. Farrell, “On approximation to a mapping function by polynomials”, Amer. J. Math., 54:3 (1932), 571–578 | DOI | MR | Zbl
[18] A. A. Dovgoshei, “The F. and M. Riesz' theorem and Carathéodory domains”, Anal. Math., 21:3 (1995), 165–175 | DOI | MR | Zbl