Carath\'eodory domains and Rudin's converse of the maximum modulus principle
Sbornik. Mathematics, Tome 206 (2015) no. 1, pp. 161-174

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain extensions of the classical Rudin theorem on the converse of the maximum modulus principle from the unit disc to Carathéodory domains. The proofs are based on recent results about properties of conformal mappings of Carathéodory domains, which are also considered in the paper. Bibliography: 18 titles.
Keywords: Carathéodory domain, maximum modulus principle, meromorphic functions, equality in the sense of conformal mappings.
@article{SM_2015_206_1_a9,
     author = {K. Yu. Fedorovskiy},
     title = {Carath\'eodory domains and {Rudin's} converse of the maximum modulus principle},
     journal = {Sbornik. Mathematics},
     pages = {161--174},
     publisher = {mathdoc},
     volume = {206},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_1_a9/}
}
TY  - JOUR
AU  - K. Yu. Fedorovskiy
TI  - Carath\'eodory domains and Rudin's converse of the maximum modulus principle
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 161
EP  - 174
VL  - 206
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_1_a9/
LA  - en
ID  - SM_2015_206_1_a9
ER  - 
%0 Journal Article
%A K. Yu. Fedorovskiy
%T Carath\'eodory domains and Rudin's converse of the maximum modulus principle
%J Sbornik. Mathematics
%D 2015
%P 161-174
%V 206
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2015_206_1_a9/
%G en
%F SM_2015_206_1_a9
K. Yu. Fedorovskiy. Carath\'eodory domains and Rudin's converse of the maximum modulus principle. Sbornik. Mathematics, Tome 206 (2015) no. 1, pp. 161-174. http://geodesic.mathdoc.fr/item/SM_2015_206_1_a9/