Generalized Dirichlet classes in a~half-plane and their application to approximations
Sbornik. Mathematics, Tome 206 (2015) no. 1, pp. 135-160

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce generalized Dirichlet classes of analytic functions in a disc and a half-plane. We establish a relationship between these classes and their zero sets. A precise sufficient condition for a zero subset of a generalized Dirichlet class in a half-plane is obtained. Using this condition, we prove a necessary condition (which is also precise) for a system of exponential functions to be complete in the space $L^2$ on a half-line with regularly varying weight of order $\alpha\in[-1,0]$. Bibliography: 18 titles.
Keywords: slowly varying function, generalized Bergman and Dirichlet classes, zero set, completeness of a system of exponentials.
Mots-clés : Laplace transform
@article{SM_2015_206_1_a8,
     author = {A. M. Sedletskii},
     title = {Generalized {Dirichlet} classes in a~half-plane and their application to approximations},
     journal = {Sbornik. Mathematics},
     pages = {135--160},
     publisher = {mathdoc},
     volume = {206},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_1_a8/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - Generalized Dirichlet classes in a~half-plane and their application to approximations
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 135
EP  - 160
VL  - 206
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_1_a8/
LA  - en
ID  - SM_2015_206_1_a8
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T Generalized Dirichlet classes in a~half-plane and their application to approximations
%J Sbornik. Mathematics
%D 2015
%P 135-160
%V 206
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2015_206_1_a8/
%G en
%F SM_2015_206_1_a8
A. M. Sedletskii. Generalized Dirichlet classes in a~half-plane and their application to approximations. Sbornik. Mathematics, Tome 206 (2015) no. 1, pp. 135-160. http://geodesic.mathdoc.fr/item/SM_2015_206_1_a8/