@article{SM_2015_206_1_a6,
author = {W. Kirs{\cyrs}h and L. Pastur},
title = {On the analogues of {Szeg\H{o}'s} theorem for ergodic operators},
journal = {Sbornik. Mathematics},
pages = {93--119},
year = {2015},
volume = {206},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_1_a6/}
}
W. Kirsсh; L. Pastur. On the analogues of Szegő's theorem for ergodic operators. Sbornik. Mathematics, Tome 206 (2015) no. 1, pp. 93-119. http://geodesic.mathdoc.fr/item/SM_2015_206_1_a6/
[1] A. Böttcher, B. Silbermann, Analysis of Toeplitz Operators, Springer-Verlag, Berlin, 1990, 512 pp. | DOI | MR | Zbl
[2] P. Deift, A. Its, I. Krasovsky, “Toeplitz matrices and Toeplitz determinants under the impetus of the Ising model: some history and some recent results”, Comm. Pure Appl. Math., 66:9 (2013), 1360–1438 | DOI | MR | Zbl
[3] B. Simon, Szegő's theorem and its descendants. Spectral theory for $L^{2}$ perturbations of orthogonal polynomials, M. B. Porter Lectures, Princeton Univ. Press, Princeton, NJ, 2011, xii+650 pp. | MR | Zbl
[4] U. Grenander, G. Szegö, Töplitz forms and their applications, California Monographs in Mathematical Sciences, Univ. of California Press, Berkeley–Los Angeles, 1958, vii+245 pp. | MR | Zbl
[5] H. Widom, “Szegő expansions for operators with smooth or nonsmooth symbol”, Operator theory: operator algebras and applications, Part 1 (Durham, NH, 1988), Proc. Sympos. Pure Math., 51, Part 1, Amer. Math. Soc., Providence, RI, 1990, 599–615 | MR | Zbl
[6] A. V. Sobolev, Pseudodifferential operators with discontinuous symbols: Widom's conjecture, Mem. Amer. Math. Soc., 222, no. 1043, Amer. Math. Soc., Providence, RI, 2013, vi+104 pp. | DOI | MR | Zbl
[7] H. Widom, “On a class of integral operators with discontinuous symbol”, Toeplitz centennial (Tel Aviv, 1981), Operator Theory: Adv. Appl., 4, Birkhäuser, Basel–Boston, Mass., 1982, 477–500 | MR | Zbl
[8] A. V. Sobolev, “Quasi-classical asymptotics for pseudodifferential operators with discontinuous symbols: Widom's conjecture”, Funct. Anal. Appl., 44:4 (2010), 313–317 ; arXiv: 1004.2576 | DOI | DOI | MR | Zbl
[9] L. Pastur, A. Figotin, Spectra of random and almost-periodic operators, Grundlehren Math. Wiss., 297, Springer-Verlag, Berlin, 1992, viii+587 pp. | MR | Zbl
[10] A. Ya. Reznikova, “The central limit theorem for the spectrum of random Jacobi matrices”, Theory Probab. Appl., 25:3 (1981), 504–513 | DOI | MR | Zbl
[11] A. Ya. Reznikova, “Limit theorems for the spectra of 1D random Schrödinger operator”, Random Oper. Stochastic Equations, 12:3 (2004), 235–254 | DOI | MR | Zbl
[12] Y. Imry, Shang-Keng Ma, “Random-field instability of the ordered state of continuous symmetry”, Phys. Rev. Lett., 35 (1975), 1399–1401 | DOI
[13] J. Cardy, Scaling and renormalization in statistical physics, Cambridge Lecture Notes Phys., 5, Cambridge Univ. Press, Cambridge, 1996, xviii+238 pp. | MR | Zbl
[14] S. Jitomirskaya, “Ergodic Schrödinger operators (on one foot)”, Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon's 60th birthday, Proc. Sympos. Pure Math., 76, Part 2, Amer. Math. Soc., Providence, RI, 2007, 613–647 | DOI | MR | Zbl
[15] F. Germinet, A. Taarabt, “Spectral properties of dynamical localization for Schrödinger operators”, Rev. Math. Phys., 25:9 (2013), 1350016, 28 pp. | DOI | MR | Zbl
[16] G. Stolz, “An introduction to the mathematics of Anderson localization”, Entropy and the quantum II, Contemp. Math., 552, Amer. Math. Soc., Providence, RI, 2011, 71–108 ; arXiv: 1104.2317 | DOI | MR | Zbl
[17] A. Ya. Khinchin, Continued fractions, Dover Publications, Inc., Mineola, NY, 1997, xii+95 pp. | MR | MR | Zbl | Zbl
[18] S. Jitomirskaya, H. Krüger, “Exponential dynamical localization for the almost Mathieu operator”, Comm. Math. Phys., 322:3 (2013), 877–882 | DOI | MR | Zbl
[19] S. Farkas, Z. Zimborás, “On the sharpness of the zero–entropy–density conjecture”, J. Math. Phys., 46:12 (2005), 123301, 8 pp. | DOI | MR | Zbl
[20] W. Kirsch, “An invitation to random Schrödnger operators”, Random Schrödinger operators, Panor. Synthèses, 25, Soc. Math. France, Paris, 2008, 1–119 | MR | Zbl
[21] L. Pastur, M. Shcherbina, Eigenvalue distribution of large random matrices, Math. Surveys Monogr., 171, Amer. Math. Soc., Providence, RI, 2011, xiv+632 pp. | DOI | MR | Zbl
[22] I. A. Ibragimov, Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters–Noordhoff Publishing, Groningen, 1971, 443 pp. | MR | MR | Zbl | Zbl