Herbert Stahl's proof of the BMV conjecture
Sbornik. Mathematics, Tome 206 (2015) no. 1, pp. 87-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper contains a simplified version of Stahl's proof of a conjecture of Bessis, Moussa and Villani on the trace of matrices $A+tB$ with Hermitian $A$ and $B$. Bibliography: 5 titles.
Keywords: perturbation theory, trace, Riemann surfaces.
Mots-clés : Hermitian matrices
@article{SM_2015_206_1_a5,
     author = {A. E. Eremenko},
     title = {Herbert {Stahl's} proof of the {BMV} conjecture},
     journal = {Sbornik. Mathematics},
     pages = {87--92},
     year = {2015},
     volume = {206},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_1_a5/}
}
TY  - JOUR
AU  - A. E. Eremenko
TI  - Herbert Stahl's proof of the BMV conjecture
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 87
EP  - 92
VL  - 206
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_1_a5/
LA  - en
ID  - SM_2015_206_1_a5
ER  - 
%0 Journal Article
%A A. E. Eremenko
%T Herbert Stahl's proof of the BMV conjecture
%J Sbornik. Mathematics
%D 2015
%P 87-92
%V 206
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2015_206_1_a5/
%G en
%F SM_2015_206_1_a5
A. E. Eremenko. Herbert Stahl's proof of the BMV conjecture. Sbornik. Mathematics, Tome 206 (2015) no. 1, pp. 87-92. http://geodesic.mathdoc.fr/item/SM_2015_206_1_a5/

[1] H. R. Stahl, “Proof of the BMV conjecture”, Acta Math., 211:2 (2013), 255–290 | DOI | MR | Zbl

[2] D. Bessis, P. Moussa, M. Villani, “Monotonic converging variational approximations to the functional integrals in quantum statistical mechanics”, J. Mathematical Phys., 16:11 (1975), 2318–2385 | DOI | MR | Zbl

[3] E. H. Lieb, R. Steiringer, “Equivalent forms of the Bessis–Moussa–Villani conjecture”, J. Statist. Phys., 115:1–2 (2004), 185–190 | DOI | MR | Zbl

[4] P. Moussa, “On the representation of $\operatorname{Tr}(e^{A-\lambda B})$ as a Laplace transform”, Rev. Math. Phys., 12:4 (2000), 621–655 | DOI | MR | Zbl

[5] M. Reed, B. Simon, Methods of mathematical physics, v. IV, Analysis of operators, Academic Press, New York–London, 1978, xv+396 pp. | MR | MR | Zbl | Zbl