@article{SM_2015_206_1_a4,
author = {V. N. Dubinin},
title = {Circular symmetrization of condensers on {Riemann} surfaces},
journal = {Sbornik. Mathematics},
pages = {61--86},
year = {2015},
volume = {206},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_1_a4/}
}
V. N. Dubinin. Circular symmetrization of condensers on Riemann surfaces. Sbornik. Mathematics, Tome 206 (2015) no. 1, pp. 61-86. http://geodesic.mathdoc.fr/item/SM_2015_206_1_a4/
[1] J. A. Jenkins, Univalent functions and conformal mapping, Ergeb. Math. Grenzgeb. (N.F.), 18, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1958, vi+169 pp. | MR | Zbl | Zbl
[2] W. K. Hayman, Multivalent functions, Cambridge Tracts in Math., 110, 2nd ed., Cambridge Univ. Press, Cambridge, 1994, xii+263 pp. | MR | Zbl
[3] V. H. Dubinin, Emkosti kondensatorov i simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo, Dalnauka, Vladivostok, 2009, 400 pp.
[4] V. N. Dubinin, “A new version of circular symmetrization with applications to $p$-valent functions”, Sb. Math., 203:7 (2012), 996–1011 | DOI | DOI | MR | Zbl
[5] G. Pólya, G. Szegö, Isoperimetric inequalities in mathematical physics, Ann. of Math. Stud., 27, Princeton Univ. Press, Princeton, N. J., 1951, xvi+279 pp. | MR | MR | Zbl | Zbl
[6] V. N. Dubinin, “The Grötzsch and Teichmüller extremal problems on a Riemann surface”, Math. Notes, 93:1 (2013), 50–57 | DOI | DOI | MR | Zbl
[7] V. N. Dubinin, “Four-point distortion theorem for complex polynomials”, Complex Var. Elliptic Equ., 59:1 (2014), 59–66 | DOI | MR | Zbl
[8] V. N. Dubinin, “Markov-type inequality and a lower bound for the moduli of critical values of polynomials”, Dokl. Math., 88:1 (2013), 449–450 | DOI | MR | Zbl
[9] V. N. Dubinin, “Symmetrization of condensers and inequalities for functions multivalent in a disk”, Math. Notes, 94:6 (2013), 876–884 | DOI | DOI | MR | Zbl
[10] V. N. Dubinin, “On the Jenkins circles covering theorem for functions holomorphic in a disk”, J. Math. Sci. (N. Y.), 200:5 (2014), 551–558 | DOI
[11] A. Hurwitz, R. Courant, Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen, Grundlehren Math. Wiss., 3, Springer-Verlag, Berlin–New York, 1964, xiii+706 pp. | MR | MR | Zbl | Zbl
[12] S. L. Sobolev, Applications of functional analysis in mathematical physics, Transl. Math. Monogr., 7, Amer. Math. Soc., Providence, R.I., 1963, vii+239 pp. | MR | MR | Zbl | Zbl
[13] M. Nakai, “Dependance of Dirichlet integrals upon lumps of Riemann surfaces”, Proc. Japan Acad. Ser. A Math. Sci., 81:7 (2005), 131–133 | DOI | MR | Zbl
[14] M. Nakai, “The dependence of capacities on moving branch points”, Nagoya Math. J., 186 (2007), 1–27 | MR | Zbl
[15] V. N. Dubinin, “Symmetrization in the geometric theory of functions of a complex variable”, Russian Math. Surveys, 49:1 (1994), 1–79 | DOI | MR | Zbl
[16] S. Stoilow, Teoria funcţiilor de o variabilă complexă, v. 2, Funcţii armonice. Suprafeţe Riemanniene, Editura Academiei Republicii Populare Romîne, Bucharest, 1958, 378 pp. | MR | Zbl
[17] M. Ohtsuka, Dirichlet problem, extremal length, and prime ends, Van Nostrand Reinhold Math. Ser., Van Nostrand Reinhold Co., New York, 1970, 326 pp. | Zbl
[18] A. Baernstein, II, “A unified approach to symmetrization”, Partial differential equations of elliptic type (Cortona, 1992), Sympos. Math., 35, Cambridge Univ. Press, Cambridge, 1994, 47–91 | MR | Zbl
[19] F. Brock, A. Yu. Solynin, “An approach to symmetrization via polarization”, Trans. Amer. Math. Soc., 352:4 (2000), 1759–1796 | DOI | MR | Zbl
[20] J. E. Brothers, W. P. Ziemer, “Minimal rearrangements of Sobolev functions”, J. Reine Angew. Math., 384 (1988), 153–179 | MR | Zbl
[21] V. A. Shlyk, “A uniqueness theorem for the symmetrization of arbitrary capacitors”, Siberian Math. J., 23:2 (1982), 267–287 | MR | Zbl
[22] I. P. Mityuk, Simmetrizatsionnye metody i ikh primenenie v geometricheskoi teorii funktsii. Vvedenie v simmetrizatsionnye metody, Kubanskii gos. un-t, Krasnodar, 1980, 90 pp.