Circular symmetrization of condensers on Riemann surfaces
Sbornik. Mathematics, Tome 206 (2015) no. 1, pp. 61-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give a simplified definition of the new version of circular symmetrization which has previously been suggested by the author for solving extremal problems in geometric function theory. A proof of the symmetrization principle for the capacities of condensers on Riemann surfaces is presented. In addition, the class of condensers under consideration is extended and all the cases of equality in the symmetrization principle are found. Bibliography: 22 titles.
Keywords: circular symmetrization, condenser capacity, Riemann surface, Chebyshev polynomial.
@article{SM_2015_206_1_a4,
     author = {V. N. Dubinin},
     title = {Circular symmetrization of condensers on {Riemann} surfaces},
     journal = {Sbornik. Mathematics},
     pages = {61--86},
     year = {2015},
     volume = {206},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_1_a4/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Circular symmetrization of condensers on Riemann surfaces
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 61
EP  - 86
VL  - 206
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_1_a4/
LA  - en
ID  - SM_2015_206_1_a4
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Circular symmetrization of condensers on Riemann surfaces
%J Sbornik. Mathematics
%D 2015
%P 61-86
%V 206
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2015_206_1_a4/
%G en
%F SM_2015_206_1_a4
V. N. Dubinin. Circular symmetrization of condensers on Riemann surfaces. Sbornik. Mathematics, Tome 206 (2015) no. 1, pp. 61-86. http://geodesic.mathdoc.fr/item/SM_2015_206_1_a4/

[1] J. A. Jenkins, Univalent functions and conformal mapping, Ergeb. Math. Grenzgeb. (N.F.), 18, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1958, vi+169 pp. | MR | Zbl | Zbl

[2] W. K. Hayman, Multivalent functions, Cambridge Tracts in Math., 110, 2nd ed., Cambridge Univ. Press, Cambridge, 1994, xii+263 pp. | MR | Zbl

[3] V. H. Dubinin, Emkosti kondensatorov i simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo, Dalnauka, Vladivostok, 2009, 400 pp.

[4] V. N. Dubinin, “A new version of circular symmetrization with applications to $p$-valent functions”, Sb. Math., 203:7 (2012), 996–1011 | DOI | DOI | MR | Zbl

[5] G. Pólya, G. Szegö, Isoperimetric inequalities in mathematical physics, Ann. of Math. Stud., 27, Princeton Univ. Press, Princeton, N. J., 1951, xvi+279 pp. | MR | MR | Zbl | Zbl

[6] V. N. Dubinin, “The Grötzsch and Teichmüller extremal problems on a Riemann surface”, Math. Notes, 93:1 (2013), 50–57 | DOI | DOI | MR | Zbl

[7] V. N. Dubinin, “Four-point distortion theorem for complex polynomials”, Complex Var. Elliptic Equ., 59:1 (2014), 59–66 | DOI | MR | Zbl

[8] V. N. Dubinin, “Markov-type inequality and a lower bound for the moduli of critical values of polynomials”, Dokl. Math., 88:1 (2013), 449–450 | DOI | MR | Zbl

[9] V. N. Dubinin, “Symmetrization of condensers and inequalities for functions multivalent in a disk”, Math. Notes, 94:6 (2013), 876–884 | DOI | DOI | MR | Zbl

[10] V. N. Dubinin, “On the Jenkins circles covering theorem for functions holomorphic in a disk”, J. Math. Sci. (N. Y.), 200:5 (2014), 551–558 | DOI

[11] A. Hurwitz, R. Courant, Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen, Grundlehren Math. Wiss., 3, Springer-Verlag, Berlin–New York, 1964, xiii+706 pp. | MR | MR | Zbl | Zbl

[12] S. L. Sobolev, Applications of functional analysis in mathematical physics, Transl. Math. Monogr., 7, Amer. Math. Soc., Providence, R.I., 1963, vii+239 pp. | MR | MR | Zbl | Zbl

[13] M. Nakai, “Dependance of Dirichlet integrals upon lumps of Riemann surfaces”, Proc. Japan Acad. Ser. A Math. Sci., 81:7 (2005), 131–133 | DOI | MR | Zbl

[14] M. Nakai, “The dependence of capacities on moving branch points”, Nagoya Math. J., 186 (2007), 1–27 | MR | Zbl

[15] V. N. Dubinin, “Symmetrization in the geometric theory of functions of a complex variable”, Russian Math. Surveys, 49:1 (1994), 1–79 | DOI | MR | Zbl

[16] S. Stoilow, Teoria funcţiilor de o variabilă complexă, v. 2, Funcţii armonice. Suprafeţe Riemanniene, Editura Academiei Republicii Populare Romîne, Bucharest, 1958, 378 pp. | MR | Zbl

[17] M. Ohtsuka, Dirichlet problem, extremal length, and prime ends, Van Nostrand Reinhold Math. Ser., Van Nostrand Reinhold Co., New York, 1970, 326 pp. | Zbl

[18] A. Baernstein, II, “A unified approach to symmetrization”, Partial differential equations of elliptic type (Cortona, 1992), Sympos. Math., 35, Cambridge Univ. Press, Cambridge, 1994, 47–91 | MR | Zbl

[19] F. Brock, A. Yu. Solynin, “An approach to symmetrization via polarization”, Trans. Amer. Math. Soc., 352:4 (2000), 1759–1796 | DOI | MR | Zbl

[20] J. E. Brothers, W. P. Ziemer, “Minimal rearrangements of Sobolev functions”, J. Reine Angew. Math., 384 (1988), 153–179 | MR | Zbl

[21] V. A. Shlyk, “A uniqueness theorem for the symmetrization of arbitrary capacitors”, Siberian Math. J., 23:2 (1982), 267–287 | MR | Zbl

[22] I. P. Mityuk, Simmetrizatsionnye metody i ikh primenenie v geometricheskoi teorii funktsii. Vvedenie v simmetrizatsionnye metody, Kubanskii gos. un-t, Krasnodar, 1980, 90 pp.