Evolution families of conformal mappings with fixed points and the Löwner-Kufarev equation
Sbornik. Mathematics, Tome 206 (2015) no. 1, pp. 33-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with evolution families of conformal mappings of the unit disc to itself that fix an interior point and a boundary point. Conditions are obtained for the evolution families to be differentiable, and an existence and uniqueness theorem for an evolution equation is proved. A convergence theorem is established which describes the topology of locally uniform convergence of evolution families in terms of infinitesimal generating functions. The main result in this paper is the embedding theorem which shows that any conformal mapping of the unit disc to itself with two fixed points can be embedded into a differentiable evolution family of such mappings. This result extends the range of the parametric method in the theory of univalent functions. In this way the problem of the mutual change of the derivative at an interior point and the angular derivative at a fixed point on the boundary is solved for a class of mappings of the unit disc to itself. In particular, the rotation theorem is established for this class of mappings. Bibliography: 27 titles.
Keywords: conformal mapping, fixed point, evolution family, angular derivative, rotation theorem.
@article{SM_2015_206_1_a3,
     author = {V. V. Goryainov},
     title = {Evolution families of conformal mappings with fixed points and the {L\"owner-Kufarev} equation},
     journal = {Sbornik. Mathematics},
     pages = {33--60},
     year = {2015},
     volume = {206},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_1_a3/}
}
TY  - JOUR
AU  - V. V. Goryainov
TI  - Evolution families of conformal mappings with fixed points and the Löwner-Kufarev equation
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 33
EP  - 60
VL  - 206
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_1_a3/
LA  - en
ID  - SM_2015_206_1_a3
ER  - 
%0 Journal Article
%A V. V. Goryainov
%T Evolution families of conformal mappings with fixed points and the Löwner-Kufarev equation
%J Sbornik. Mathematics
%D 2015
%P 33-60
%V 206
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2015_206_1_a3/
%G en
%F SM_2015_206_1_a3
V. V. Goryainov. Evolution families of conformal mappings with fixed points and the Löwner-Kufarev equation. Sbornik. Mathematics, Tome 206 (2015) no. 1, pp. 33-60. http://geodesic.mathdoc.fr/item/SM_2015_206_1_a3/

[1] K. Löwner, “Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I”, Math. Ann., 89:1-2 (1923), 103–121 | DOI | MR | Zbl

[2] G. M. Goluzin, “O teoremakh iskazheniya v teorii konformnykh otobrazhenii”, Matem. sb., 1(43):1 (1936), 127–135 | Zbl

[3] L. de Branges, A proof of the Bieberbach conjecture, Preprint/LOMI E-5-84, Leningrad Branch of the V. A. Steklov Mathematical Institute, Leningrad, 1984, 21 pp.

[4] L. de Branges, “A proof of the Bieberbach conjecture”, Acta Math., 154:1–2 (1985), 137–152 | DOI | MR | Zbl

[5] G. M. Goluzin, “Vnutrennie zadachi teorii odnolistnykh funktsii”, UMN, 1939, no. 6, 26–89 | MR | Zbl

[6] P. P. Kufarev, “Ob odnoparametricheskikh semeistvakh analiticheskikh funktsii”, Matem. sb., 13(55):1 (1943), 87–118 | MR | Zbl

[7] Ch. Pommerenke, “Über die Subordination analytischer Funktionen”, J. Reine Angew. Math., 218 (1965), 159–173 | DOI | MR | Zbl

[8] V. Ya. Gutlyanskii, “Parametric representation of univalent functions”, Soviet Math. Dokl., 11 (1970), 1273–1276 | MR | Zbl

[9] V. V. Goryainov, O. S. Kudryavtseva, “One-parameter semigroups of analytic functions, fixed points and the Koenigs function”, Sb. Math., 202:7 (2011), 971–1000 | DOI | DOI | MR | Zbl

[10] V. V. Goryainov, “Semigroups of analytic functions in analysis and applications”, Russian Math. Surveys, 67:6 (2012), 975–1021 | DOI | DOI | MR | Zbl

[11] E. A. Coddington, N. Levinson, Theory of ordinary differential equations, McGraw-Hill Book Co., New York–Toronto–London, 1955, xii+429 pp. | MR | Zbl

[12] V. N. Dubinin, “Boundary values of the Schwarzian derivative of a regular function”, Sb. Math., 202:5 (2011), 649–663 | DOI | DOI | MR | Zbl

[13] V. N. Dubinin, V. Yu. Kim, “Distortion theorems for functions regular and bounded in the disk”, J. Math. Sci. (N. Y.), 150:3 (2008), 2018–2026 | DOI | MR

[14] V. N. Dubinin, “The Shwarz inequality on the boundary for functions regular in the disk”, J. Math. Sci. (N. Y.), 122:6 (2004), 3623–3629 | DOI | MR | Zbl

[15] J. M. Anderson, A. Vasil'ev, “Lower Schwarz–Pick estimates and angular derivatives”, Ann. Acad. Sci. Fenn. Math., 33:1 (2008), 101–110 | MR | Zbl

[16] Ch. Pommerenke, A. Vasil'ev, “Angular derivatives of bounded univalent functions and extremal partitions of the unit disk”, Pacific J. Math., 206:2 (2002), 425–450 | DOI | MR | Zbl

[17] A. Yu. Solynin, “The boundary distortion and extremal problems in certain classes of univalent functions”, J. Math. Sci., 79:5 (1996), 1341–1358 | DOI | MR | Zbl

[18] Z. Nehari, “Some inequalities in the theory of functions”, Trans. Amer. Math. Soc., 75:2 (1953), 256–286 | DOI | MR | Zbl

[19] A. Vasil'ev, Moduli of families of curves for conformal and quasiconformal mappings, Lecture Notes in Math., 1788, Springer-Verlag, Berlin, 2002, x+211 pp. | DOI | MR | Zbl

[20] L. V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York–Düsseldorf–Johannesburg, 1973, ix+157 pp. | MR | Zbl

[21] Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren Math. Wiss., 299, Springer-Verlag, Berlin, 1992, x+300 pp. | DOI | MR | Zbl

[22] V. V. Goryainov, “Evolyutsionnye semeistva konformnykh otobrazhenii s nepodvizhnymi tochkami”, Zbirnik prats In-tu matematiki NAN Ukraïni, 10:4–5 (2013), 424–431 | Zbl

[23] V. V. Goryainov, “O skhodimosti odnoparametricheskikh semeistv analiticheskikh funktsii”, Voprosy metricheskoi teorii otobrazhenii i ee primenenie (Donetsk, 1976), Naukova dumka, Kiev, 1978, 13–24 | MR

[24] V. V. Goryainov, “On parametric representation of univalent functions”, Soviet Math. Dokl., 20:2 (1979), 378–381 | MR | Zbl

[25] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, R.I., 1969, vi+676 pp. | MR | MR | Zbl | Zbl

[26] P. L. Duren, Univalent functions, Grundlehren Math. Wiss., 259, Springer-Verlag, New York, 1983, xiv+382 pp. | MR | Zbl

[27] V. V. Goryainov, “Semigroups of conformal mappings”, Math. USSR-Sb., 57:2 (1987), 463–483 | DOI | MR | Zbl