@article{SM_2015_206_1_a2,
author = {Michael I. Ganzburg and Paul Nevai and Tam\'as Erd\'elyi},
title = {M.~Riesz-Schur-type inequalities for entire functions of exponential type},
journal = {Sbornik. Mathematics},
pages = {24--32},
year = {2015},
volume = {206},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_1_a2/}
}
TY - JOUR AU - Michael I. Ganzburg AU - Paul Nevai AU - Tamás Erdélyi TI - M. Riesz-Schur-type inequalities for entire functions of exponential type JO - Sbornik. Mathematics PY - 2015 SP - 24 EP - 32 VL - 206 IS - 1 UR - http://geodesic.mathdoc.fr/item/SM_2015_206_1_a2/ LA - en ID - SM_2015_206_1_a2 ER -
Michael I. Ganzburg; Paul Nevai; Tamás Erdélyi. M. Riesz-Schur-type inequalities for entire functions of exponential type. Sbornik. Mathematics, Tome 206 (2015) no. 1, pp. 24-32. http://geodesic.mathdoc.fr/item/SM_2015_206_1_a2/
[1] P. Nevai, “The Bernstein inequality and the Schur inequality are equivalent”, J. Approx. Theory, 182 (2014), 103–109 | DOI | MR | Zbl
[2] P. Nevai, The true story of $n$ vs. $2n$ in the Bernstein inequality (to appear)
[3] M. Riesz, “Eine trigonometrische Interpolationsformel und einige Ungleichungen für Polynome”, Jahresber. Deutsch. Math.-Ver., 23 (1914), 354–368 | Zbl
[4] Q. I. Rahman, G. Schmeißer, Analytic theory of polynomials, London Math. Soc. Monogr. (N.S.), 26, The Clarendon Press, Oxford Univ. Press, Oxford, 2002, xiv+742 pp. | MR | Zbl
[5] I. Schur, “Über das Maximum des absoluten Betrages eines Polynoms in einem gegebenen Intervall”, Math. Z., 4:3-4 (1919), 271–287 | DOI | MR | Zbl
[6] R. J. Duffin, A. C. Schaeffer, “Some inequalities concerning functions of exponential type”, Bull. Amer. Math. Soc., 43:8 (1937), 554–556 | DOI | MR | Zbl
[7] V. È. Kacnel'son, “Equivalent norms in spaces of entire functions”, Math. USSR-Sb., 21:1 (1973), 33–55 | DOI | MR | Zbl