M.~Riesz-Schur-type inequalities for entire functions of exponential type
Sbornik. Mathematics, Tome 206 (2015) no. 1, pp. 24-32

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a general M. Riesz-Schur-type inequality for entire functions of exponential type. If $f$ and $Q$ are two functions of exponential types $\sigma > 0$ and $\tau \geqslant 0$, respectively, and if $Q$ is real-valued and the real zeros of $Q$, not counting multiplicities, are bounded away from each other, then $$ |f(x)|\le (\sigma+\tau) (A_{\sigma+\tau}(Q))^{-1/2}\|Q f\|_{\mathrm C(\mathbb R)},\qquad x\in \mathbb R, $$ where $$ A_s(Q) \stackrel{\mathrm{def}}{=}\inf_{x\in\mathbb R} \bigl([Q'(x)]^2+s^2 [Q(x)]^2\bigr). $$ We apply this inequality to the weights $Q(x)\stackrel{\mathrm{def}}{=} \sin (\tau x)$ and $Q(x) \stackrel{\mathrm{def}}{=} x$ and describe the extremal functions in the corresponding inequalities. Bibliography: 7 titles.
Keywords: M. Riesz-Schur-type inequalities, Duffin-Schaeffer inequality, entire functions of exponential type.
@article{SM_2015_206_1_a2,
     author = {Michael I. Ganzburg and Paul Nevai and Tam\'as Erd\'elyi},
     title = {M.~Riesz-Schur-type inequalities for entire functions of exponential type},
     journal = {Sbornik. Mathematics},
     pages = {24--32},
     publisher = {mathdoc},
     volume = {206},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_1_a2/}
}
TY  - JOUR
AU  - Michael I. Ganzburg
AU  - Paul Nevai
AU  - Tamás Erdélyi
TI  - M.~Riesz-Schur-type inequalities for entire functions of exponential type
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 24
EP  - 32
VL  - 206
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_1_a2/
LA  - en
ID  - SM_2015_206_1_a2
ER  - 
%0 Journal Article
%A Michael I. Ganzburg
%A Paul Nevai
%A Tamás Erdélyi
%T M.~Riesz-Schur-type inequalities for entire functions of exponential type
%J Sbornik. Mathematics
%D 2015
%P 24-32
%V 206
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2015_206_1_a2/
%G en
%F SM_2015_206_1_a2
Michael I. Ganzburg; Paul Nevai; Tamás Erdélyi. M.~Riesz-Schur-type inequalities for entire functions of exponential type. Sbornik. Mathematics, Tome 206 (2015) no. 1, pp. 24-32. http://geodesic.mathdoc.fr/item/SM_2015_206_1_a2/