M.~Riesz-Schur-type inequalities for entire functions of exponential type
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 206 (2015) no. 1, pp. 24-32
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove a general M. Riesz-Schur-type inequality for entire functions of exponential type. If $f$ and $Q$ are two functions of exponential types $\sigma > 0$ and $\tau \geqslant 0$, respectively, and if $Q$ is real-valued and the real zeros of $Q$, not counting multiplicities, are bounded away from each other, then
$$
|f(x)|\le (\sigma+\tau) (A_{\sigma+\tau}(Q))^{-1/2}\|Q f\|_{\mathrm C(\mathbb R)},\qquad x\in \mathbb R,
$$
where
$$
A_s(Q) \stackrel{\mathrm{def}}{=}\inf_{x\in\mathbb R} \bigl([Q'(x)]^2+s^2 [Q(x)]^2\bigr).
$$
We apply this inequality to the weights $Q(x)\stackrel{\mathrm{def}}{=} \sin (\tau x)$ and
 $Q(x) \stackrel{\mathrm{def}}{=} x$ and describe the extremal functions in the corresponding inequalities.
Bibliography: 7 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
M. Riesz-Schur-type inequalities, Duffin-Schaeffer inequality, entire functions of exponential type.
                    
                    
                    
                  
                
                
                @article{SM_2015_206_1_a2,
     author = {Michael I. Ganzburg and Paul Nevai and Tam\'as Erd\'elyi},
     title = {M.~Riesz-Schur-type inequalities for entire functions of exponential type},
     journal = {Sbornik. Mathematics},
     pages = {24--32},
     publisher = {mathdoc},
     volume = {206},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_1_a2/}
}
                      
                      
                    TY - JOUR AU - Michael I. Ganzburg AU - Paul Nevai AU - Tamás Erdélyi TI - M.~Riesz-Schur-type inequalities for entire functions of exponential type JO - Sbornik. Mathematics PY - 2015 SP - 24 EP - 32 VL - 206 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2015_206_1_a2/ LA - en ID - SM_2015_206_1_a2 ER -
Michael I. Ganzburg; Paul Nevai; Tamás Erdélyi. M.~Riesz-Schur-type inequalities for entire functions of exponential type. Sbornik. Mathematics, Tome 206 (2015) no. 1, pp. 24-32. http://geodesic.mathdoc.fr/item/SM_2015_206_1_a2/
