A~refinement of Gol'dberg's theorem on estimating the type with respect to a~proximate order of an entire function of integer order
Sbornik. Mathematics, Tome 206 (2015) no. 12, pp. 1771-1796

Voir la notice de l'article provenant de la source Math-Net.Ru

A best possible second term is found in Gol'dberg's theorem on an asymptotic upper estimate for the logarithm of the maximum modulus of an entire function of integer order. Bibliography: 9 titles.
Keywords: entire function of integer order, type of an entire function with respect to a proximate order, slowly varying function, asymptotic estimate.
@article{SM_2015_206_12_a5,
     author = {F. S. Myshakov and A. Yu. Popov},
     title = {A~refinement of {Gol'dberg's} theorem on estimating the type with respect to a~proximate order of an entire function of integer order},
     journal = {Sbornik. Mathematics},
     pages = {1771--1796},
     publisher = {mathdoc},
     volume = {206},
     number = {12},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_12_a5/}
}
TY  - JOUR
AU  - F. S. Myshakov
AU  - A. Yu. Popov
TI  - A~refinement of Gol'dberg's theorem on estimating the type with respect to a~proximate order of an entire function of integer order
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 1771
EP  - 1796
VL  - 206
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_12_a5/
LA  - en
ID  - SM_2015_206_12_a5
ER  - 
%0 Journal Article
%A F. S. Myshakov
%A A. Yu. Popov
%T A~refinement of Gol'dberg's theorem on estimating the type with respect to a~proximate order of an entire function of integer order
%J Sbornik. Mathematics
%D 2015
%P 1771-1796
%V 206
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2015_206_12_a5/
%G en
%F SM_2015_206_12_a5
F. S. Myshakov; A. Yu. Popov. A~refinement of Gol'dberg's theorem on estimating the type with respect to a~proximate order of an entire function of integer order. Sbornik. Mathematics, Tome 206 (2015) no. 12, pp. 1771-1796. http://geodesic.mathdoc.fr/item/SM_2015_206_12_a5/