A refinement of Gol'dberg's theorem on estimating the type with respect to a proximate order of an entire function of integer order
Sbornik. Mathematics, Tome 206 (2015) no. 12, pp. 1771-1796 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A best possible second term is found in Gol'dberg's theorem on an asymptotic upper estimate for the logarithm of the maximum modulus of an entire function of integer order. Bibliography: 9 titles.
Keywords: entire function of integer order, type of an entire function with respect to a proximate order, slowly varying function, asymptotic estimate.
@article{SM_2015_206_12_a5,
     author = {F. S. Myshakov and A. Yu. Popov},
     title = {A~refinement of {Gol'dberg's} theorem on estimating the type with respect to a~proximate order of an entire function of integer order},
     journal = {Sbornik. Mathematics},
     pages = {1771--1796},
     year = {2015},
     volume = {206},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2015_206_12_a5/}
}
TY  - JOUR
AU  - F. S. Myshakov
AU  - A. Yu. Popov
TI  - A refinement of Gol'dberg's theorem on estimating the type with respect to a proximate order of an entire function of integer order
JO  - Sbornik. Mathematics
PY  - 2015
SP  - 1771
EP  - 1796
VL  - 206
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2015_206_12_a5/
LA  - en
ID  - SM_2015_206_12_a5
ER  - 
%0 Journal Article
%A F. S. Myshakov
%A A. Yu. Popov
%T A refinement of Gol'dberg's theorem on estimating the type with respect to a proximate order of an entire function of integer order
%J Sbornik. Mathematics
%D 2015
%P 1771-1796
%V 206
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2015_206_12_a5/
%G en
%F SM_2015_206_12_a5
F. S. Myshakov; A. Yu. Popov. A refinement of Gol'dberg's theorem on estimating the type with respect to a proximate order of an entire function of integer order. Sbornik. Mathematics, Tome 206 (2015) no. 12, pp. 1771-1796. http://geodesic.mathdoc.fr/item/SM_2015_206_12_a5/

[1] B. Ja. Levin, Distribution of zeros of entire functions, Amer. Math. Soc., Providence, R.I., 1964, viii+493 pp. | MR | MR | Zbl | Zbl

[2] G. Valiron, “Sur les fonctions entières d'ordre nul et d'ordre fini et en particulier les fonctions à correspondance régulière”, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (3), 5 (1913), 117–257 | DOI | MR | Zbl

[3] A. Denjoy, “Sur les produits canoniques d'ordre infini”, J. Math. Pures Appl. (6), 1910, no. 6, 1–136 | Zbl

[4] A. A. Gol'dberg, “An integral with respect to a semiadditive measure and its application to the theory of entire functions. I”, Amer. Math. Soc. Transl. Ser. 2, 88, Amer. Math. Soc., Providence, R.I., 1970, 105–162 | MR | Zbl

[5] A. A. Gol'dberg, “An integral with respect to a semiadditive measure and its application to the theory of entire functions. III”, Amer. Math. Soc. Transl. Ser. 2, 88, Amer. Math. Soc., Providence, R.I., 1970, 181–232 | MR | Zbl

[6] A. Yu. Popov, “The most rapid possible growth of the maximum modulus of a canonical product of noninteger order with a prescribed majorant of the counting function of zeros”, Sb. Math., 204:5 (2013), 683–725 | DOI | DOI | MR | Zbl

[7] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and series, v. 1, Elementary functions, Gordon Breach Science Publishers, New York, 1986, 798 pp. | MR | MR | Zbl | Zbl

[8] E. Seneta, Regularly varying functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin–New York, 1976, v+112 pp. | DOI | MR | MR | Zbl | Zbl

[9] S. Saks, Theory of the integral, Monogr. Mat., 7, 2nd ed., G. E. Stechert, Warszawa–New York, 1937, vi+347 pp. | MR | Zbl