A~refinement of Gol'dberg's theorem on estimating the type with respect to a~proximate order of an entire function of integer order
Sbornik. Mathematics, Tome 206 (2015) no. 12, pp. 1771-1796
Voir la notice de l'article provenant de la source Math-Net.Ru
A best possible second term is found in Gol'dberg's theorem on an asymptotic upper estimate for the logarithm of the maximum modulus of an entire function of integer order.
Bibliography: 9 titles.
Keywords:
entire function of integer order, type of an entire function with respect to a proximate order, slowly varying function, asymptotic estimate.
@article{SM_2015_206_12_a5,
author = {F. S. Myshakov and A. Yu. Popov},
title = {A~refinement of {Gol'dberg's} theorem on estimating the type with respect to a~proximate order of an entire function of integer order},
journal = {Sbornik. Mathematics},
pages = {1771--1796},
publisher = {mathdoc},
volume = {206},
number = {12},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2015_206_12_a5/}
}
TY - JOUR AU - F. S. Myshakov AU - A. Yu. Popov TI - A~refinement of Gol'dberg's theorem on estimating the type with respect to a~proximate order of an entire function of integer order JO - Sbornik. Mathematics PY - 2015 SP - 1771 EP - 1796 VL - 206 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2015_206_12_a5/ LA - en ID - SM_2015_206_12_a5 ER -
%0 Journal Article %A F. S. Myshakov %A A. Yu. Popov %T A~refinement of Gol'dberg's theorem on estimating the type with respect to a~proximate order of an entire function of integer order %J Sbornik. Mathematics %D 2015 %P 1771-1796 %V 206 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2015_206_12_a5/ %G en %F SM_2015_206_12_a5
F. S. Myshakov; A. Yu. Popov. A~refinement of Gol'dberg's theorem on estimating the type with respect to a~proximate order of an entire function of integer order. Sbornik. Mathematics, Tome 206 (2015) no. 12, pp. 1771-1796. http://geodesic.mathdoc.fr/item/SM_2015_206_12_a5/